August 25, 2017

James Makepeace, P.E. Makepeace Engineering LLC 816 2nd Av S, Suite 800 Onalaska, WI 54650

Tim Acklin, Senior Planner City of La Crosse 400 La Crosse Street La Crosse, WI 54601

Mr. Acklin,

Enclosed are the following documents for 360 Real Estate's Campbell Street Project:

- 1. 7 sets of plans
 - a. C101 Site Plan
 - b. C102 Grading Plan
 - c. C103 Construction Details
 - d. WSDOT Standard Detail Sheets 8D1, 8E8, 8E9, 8E10, 8E14
- 2. Design Review Checklist appropriate for the civil drawings
- 3. Storm water modeling
- 4. Morphological evaluation

Please provide a copy of this letter to Yuri for his review, as it includes a storm water modeling summary.

The storm water ordinance requires 100% infiltration of the 2-year design storm.

The constructed site will include 14,750 SF Building

9,520 SF Concrete 7,620 SF Pervious 31,890 SF Total

The 7,620 square feet of pervious includes 1,050 square feet of biofilter and 2,150 square feet of porous paving.

For modeling, the project was broken into four subcatchments: Porous Pavement, East, West, and Front.

The porous paving subcatchment includes half of each building and most of the concrete parking lot. All of this area flows to the porous paving.

The East subcatchment includes a small area of roof on the east side of the buildings, as well as improvements east of the buildings.

The West subcatchment includes a small area of roof on the west side of the buildings, as well as improvements west of the buildings and some of the parking lot in the west side of the project.

The Front subcatchment includes the front half of the buildings, as well as the improvements between the building and the sidewalk. The modeling was done for just one building. As such, the resulting required biofilter area needs to be doubled.

In all cases, the requisite biofilter area was broken up and strategically placed around the site in order to ensure that all flow enters the biofilters prior to leaving the site.

Modeling results are as follows:

BMP	Required	Provided
Porous Pavement	1,960 SF	2,150 SF
Biofilter	1,050 SF	1,100 SF

Should you have any questions while reviewing the documents, please don't hesitate to contact me directly.

Sincerely, James Makepeace, P.E. Makepeace Engineering LLC

8D1: Concrete Curb, Concrete Curb & Gutter and Ties

ω D

Standard Detail Drawing 8d1

Concrete Curb, Concrete Curb & Gutter and Ties

References:

FDM 11-20-1

Bid items associated with this drawing:

ITEM NUMBER	DESCRIPTION	<u>UNIT</u>
416.0610	Drilled Ties Bars	EACH
601.0105	Concrete Curb Type A	LF
601.0110	Concrete Curb Type D	LF
601.0115	Concrete Curb Type G	LF
601.0120	Concrete Curb Type J	LF
601.0150	Concrete Curb Integral Type D	LF
601.0155	Concrete Curb Integral Type J	LF
601.0405	Concrete Curb & Gutter 18-Inch Type A	LF
601.0407	Concrete Curb & Gutter 18-Inch Type D	LF
601.0409	Concrete Curb & Gutter 30-Inch Type A	LF
601.0411	Concrete Curb & Gutter 30-Inch Type D	LF
601.0413	Concrete Curb & Gutter 6-Inch Sloped 30-Inch Type G	LF
601.0415	Concrete Curb & Gutter 6-Inch Sloped 30-Inch Type J	LF
601.0417	Concrete Curb & Gutter 30-Inch Type K	LF
601.0419	Concrete Curb & Gutter 30-Inch Type L	LF
601.0452	Concrete Curb & Gutter Integral 30-Inch Type D	LF
601.0454	Concrete Curb & Gutter Integral 30-linch Type J	LF
601.0456	Concrete Curb & Gutter Integral 30-Inch Type L	LF
601.0501	Concrete Curb & Gutter Integral 4-Inch Sloped 36-Inch	LF
601.0511	Concrete Curb & Gutter Integral 6-Inch Sloped 36-Inch	LF
601.0551	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type A	LF
601.0553	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type D	LF
601.0555	Concrete Curb & Gutter 6-Inch Sloped 36-Inch Type A	LF
601.0557	Concrete Curb & Gutter 6-Inch Sloped 36-Inch Type D	LF
601.0574	Concrete Curb & Gutter 4-Inch Sloped 30-Inch Type G	LF
601.0576	Concrete Curb & Gutter 4-Inch Sloped 30-Inch Type J	LF
601.0580	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type R	LF
601.0582	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type T	LF
601.0584	Concrete Curb & Gutter 4-Inch Sloped 30-Inch Type TBT	LF
601.0586	Concrete Curb & Gutter 4-Inch Sloped 30-Inch Type TBTT	LF
601.0588	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type TBT	LF
601.0590	Concrete Curb & Gutter 4-Inch Sloped 36-Inch Type TBTT	LF

Standardized Special Provisions associated with this drawing:

<u>STSP NUMBER</u>	TITLE
NONE	

Other SDDs associated with this drawing:

NONE

Design Notes:

Any special curb or curb and gutter, different from those listed above, requires a SPV.0900 item number, special provision and special detail.

List in miscellaneous quantities all curb and curb and gutter types along with STA-STA limits LT and RT. Label typical finished sections with curb and curb and gutter types. Indicate on plan sheets where reverse slope gutter is required.

Any required modification to the standard 3/4" gutter slope will need to be addressed in a plan general note or by including a special detail. When modifying the gutter cross slope, adjust that inlet spacing per <u>FDM 13-25-15</u>.

The face of curb for the Type R and T is 6-inches from the back of curb.

Use the end section curb & gutter at railroad crossings where curb & gutter is present and at driveways where the sidewalk is adjacent to the back of curb.

Curb and gutter Type TBT (Thrie Beam Transition) and TBTT (Thrie Beam Transition Tied) can be used with thrie beam transitions to control water by the thrie beam transition. See the Thrie Beam Transition SDDs for more information. In some cases, TBT and TBTT are required for proper performance of the thrie beam transition.

Note:

Do not use this SDD for Items 601.0199.s Concrete Curb Precast or 465.0310 Asphaltic Curb. Always include a special detail in the plan for these items. (See CADDS cell 9 or 10 in file CDCRBFTR.CEL and modify titles to match that of item 465.0310.)

Contact Person:

Paul Vraney (608) 266-8486

8E8: Typical Installations of Erosion Bales/Temporary Ditch Checks

S.D.D. 8 E 8-3

D D ω m 9 ō

GENERAL NOTES

DETAILS OF CONSTRUCTION NOT SHOWN ON THIS DRAWING SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND APPLICABLE SPECIAL PROVISIONS.

- () HORIZONTAL BRACE REQUIRED WITH 2" X 4" WOODEN FRAME OR EQUIVALENT AT TOP OF POSTS.
- (2) FOR MANUAL INSTALLATIONS THE TRENCH SHALL BE A MINIMUM OF 4" WIDE & 6" DEEP TO BURY AND ANCHOR THE GEOTEXTILE FABRIC. FOLD MATERIAL TO FIT TRENCH AND BACKFILL & COMPACT TRENCH WITH EXCAVATED SOIL.
- (3) WOOD POSTS SHALL BE A MINIMUM SIZE OF $1\frac{1}{8}$ " X $1\frac{1}{8}$ " OF OAK OR HICKORY.
- (4) SILT FENCE TO EXTEND ACROSS THE TOP OF THE PIPE.
- (5) CONSTRUCT SILT FENCE FROM A CONTINUOUS ROLL IF POSSIBLE BY CUTTING LENGTHS TO AVOID JOINTS. IF A JOINT IS NECESSARY USE ONE OF THE FOLLOWING TWO METHODS; A) OVERLAP THE END POSTS AND TWIST, OR ROTATE, AT LEAST 180 DEGREES, B) HOOK THE END OF EACH SILT FENCE LENGTH.

SILT FENCE TIE BACK (WHEN REQUIRED BY THE ENGINEER)

	SILT FENCE	9 - 0
DEPA	STATE OF WISCONSIN RTMENT OF TRANSPORTATION	μ
APPROVED		1
4-29-05	/S/ Beth Cannestra	-
DATE	CHIEF ROADWAY DEVELOPMENT ENGINEER	4
FHWA		J U

8E10: Inlet Protection Type A, B, C and D

S.D.D. 8 E 10

N

Standard Detail Drawing 8e10

Inlet Protection Type A, B, C and D

References:

FDM 10-10-27

Bid items associated with this drawing:

ITEM NUMBER	DESCRIPTION	<u>UNIT</u>
628.7005	Inlet Protection Type A	EACH
628.7010	Inlet Protection Type B	EACH
628.7015	Inlet Protection Type C	EACH
628.7020	Inlet Protection Type D	EACH

Standardized Special Provisions associated with this drawing:

<u>STSP NUMBER</u>	<u>TITLE</u>
NONE	

Other SDDs associated with this drawing:

NONE

Design Notes:

See Wisconsin Department of Transportation's Product Acceptability List (PAL) for other inlet protection devices available. A copy of the PAL is available at

http://www.dot.wisconsin.gov/business/engrserv/docs/pal.pdf.

Use inlet protection Type A where the wooden posts can be placed around the inlet box. Examples of such locations include median inlets, field inlets, yard drains, or curb inlet locations prior to the placement of curb and gutter.

Inlet protection Type B or C may be used only after the inlet castings are in place. Most urban projects, with curb inlets will require both the bid item or inlet protection Type A and inlet protection Type C, at each inlet location, as the project progresses.

Inlet protection Type D is intended for locations where street flooding could pose safety hazards. Projects without parking lanes and locations where the inlets are on the low side of curves or the low points of vertical profiles should be evaluated for Type D inlet protection.

Contact Person:

Robert Armstrong (608) 267-3147 Robert Armstrong (608) 267-3147

8E14: Tracking Pad

S D D ω m 14

6

SHALL CONFORM TO THE PERTINENT REQUIREMENTS OF THE STANDARD SPECIFICATIONS AND THE APPLICABLE SPECIAL PROVISIONS.

SURFACE WATER MUST BE PREVENTED FROM PASSING THROUGH THE TRACKING PAD. FLOWS

CULVERT PIPE OR OTHER BMP USED TO DIVERT WATER AWAY, AROUND OR UNDER THE TRACKING

THE COST OF ADDITIONAL BMP TO DIVERT WATER ARE INCIDENTAL TO THE TRACKING PAD

6

TRACKING PAD STATE OF WISCONSIN

DEPARTMENT OF TRANSPORTATION

3-24-2011 DATE

/S/ Jerry H.Zogg ROADWAY STANDARDS DEVELOPMENT ENGINEER

14 ш ω Δ Δ

S

-

10 Data File: [U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\Porous Pavement.mdb] - [Land Use Model]

ainage System Control Practice		Surface Pavement Layer Infiltration Rate Data	- Restorative Cleaning Frequency
		Initial Infiltration Bate (in/hr) 10	0.00 C Never Cleaned
otal Porous and Upstream Drainage Area:	0.260 ac.	Surface Pavement Percent Solids Removal Upon Cleaning (0-100) 51	0.0 C Three Times per Year C Semi-Annually
Porous pavement area (acres):	0.045	Enter either these three values:	C Annually C Every Two Years
flow Hydrograph Peak to Average Flow B	atio 3.8	Percent of Infiltration Rate After 3 Years (0-100)	C Every Three Years
		Percent of Infiltration Rate After 5 Years (0-100)	C Every Four Years
Pavement Geometry and Propertie	s	Time Period Until Complete Clogging Occurs (yrs)	Every Five Years
1 - Pavement Thickness (in)	2.0	Or this value:	C Every Seven Tears
Pavement Porosity (>0 and <1)	0.15	Surface Clogging Load (lb/sf) 0.	.06
2 - Aggregate Bedding Thickness (in)	10.0		
Aggregate Bedding Porosity (>0 and <1)	0.20		
3 - Aggregate Base Reservoir Thickness (in)	24.0	Select Particle Size Distribution File	
Aggregate Base Reservoir Porosity (>0 and <1)	0.33	Colore Etc. Not needed - calculated by progra	am
Dereus Dausment Area to Area Dass Area Date	1 10	DEIEL FILE	
Follows Payellient Alea to Ayy base Alea hallo	1.29		
Dutlet/Discharge Options	1.23	 	oue Pauement Geometre Schematic
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches)	0.00	Por	ous Pavement Geometry Schematic
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum)	0.00	Por Percent of Total Area that is Porous Pavement	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Laver
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00	Percent of Total Area that is Porous Pavement 17.3 %	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Laver
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0.0 0.0 0.500	Percent of Total Area that is Porous Pavement 17.3 %	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Layer Aggregate Bed Layer
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0 0.0 0 0.500	Percent of Total Area that is Porous Pavement 17.3 %	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Laver Aggregate Bed Laver
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0.0 0.500	Percent of Total Area that is Porous Pavement 17.3 %	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Layer Aggregate Bed Layer
Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0 0.500 0 0	Percent of Total Area that is Porous Pavement 17.3 2 36.0"	Aggregate Base Layer
Outlet/Discharge Options Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0.500 0.500	Percent of Total Area that is Porous Pavement 17.3 2 36.0"	Aggregate Base Layer
Outlet/Discharge Options Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Percent of Total Area that is Porous Pavement 17.3 %	Ourse Pavement Geometry Subgrade
Outlet/Discharge Options Outlet/Discharge Options Perforated Pipe Underdrain Diameter, if used (inches) 4 - Perforated Pipe Underdrain Outlet Invert Elevation (inches above Datum) Number of Perforated Pipe Underdrains (<250)	0.00 0.0 0.500 0.500 0.500 0.500 0 in/hr 0.05 in/hr 05 in/hr 05 in/hr	Percent of Total Area that is Porous Pavement 17.3 %	ous Pavement Geometry Schematic Pavement Surface Porous Pavement Layer Aggregate Bed Layer Aggregate Base Layer Subgrade

Porous Pavement - InputData Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\Porous Pavement.mdb WinSLAMM Version 10.2.1 Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 07/01/81 Study period ending date: 08/01/81 End of Winter Season: 03/12 Start of Winter Season: 12/02 Date: 08-25-2017 Time: 13:50:33 Site information: LU# 1 - Residential: Residential 1 Total area (ac): 0.260 1 - Roofs 1: 0.148 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 0.112 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Control Practice 1: Porous Pavement CP# 1 (DS) - DS Porous Pavement # 1 Porous pavement area (ac): 0.045 Inflow hydrograph peak to average flow ratio: 3.8 Porous pavement thickness (in): 2 Porous pavement porosity: 0.15 Aggregate bedding thickness (in): 10 Aggregate bedding porosity: 0.2 Aggregate base reservoir thickness (in): 24 Aggregate base reservoir porosity: 0.33 Porous pavement surface area to aggregate base area ratio: 1.29 Underdrain diameter (in): 0

Porous Pavement - InputData Underdrain outlet invert elevation (ft above datum): 0 Number of underdrains: 0 Subgrade seepage rate (in/hr): 0.5 Use random number generation to account for uncertainty in seepage rate:

0

Subgrade seepage rate COV: 0 Surface pavement initial infiltration rate (in/hr): 100 Surface Pavement Percent Solids Removal Upon Cleaning: 50 Porous pavement surface clogging load (lbs/sf): 0.06 Porous pavement restorative cleaning frequency: Semi-annually TSS concentration reduction percentage through underdrain: 0 Porous pavement particle size distribution file name: Not needed -

calculated by program

Porous Pavement - Output Summary SLAMM for Windows Version 10.2.1 (c) Copyright Robert Pitt and John Voorhees 2012 All Rights Reserved Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\Porous Pavement.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Start of Winter Season: 12/02 End of Winter Season: 03/12 Model Run Start Date: 07/01/81 Model Run End Date: 08/01/81 Date of run: 08-25-2017 Time of run: 13:50:20 Total Area Modeled (acres): 0.260 Years in Model Run: 0.08 Runoff Percent Particulate Particulate Percent Volume Runoff Solids Solids Particulate (cu ft) Volume Conc. Yield Solids Reduction (mg/L)(lbs) Reduction Total of all Land Uses without Controls: 2632 75.49 -12.40

Outfall Total with Controls: 0 100.00% Annualized Total After Outfall Controls: 0

100.00%

0

0

E Eiof Itration Control Device

X

		Ľ		Х	
			-	e	×
				_	-
Residentia	1				
RES					
1					
1					
1					
1					
Unction I					
DS Bishillers					
BF					
Junction 2					
φ					
4					
Ou:tal					
001					
0 V = 6	330		n Tr	-	
				-	-

Front - InputData Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\Front.mdb WinSLAMM Version 10.2.1 Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 07/01/81 Study period ending date: 08/01/81 Start of Winter Season: 12/02 End of Winter Season: 03/12 Date: 08-25-2017 Time: 14:05:04 Site information: LU# 1 - Residential: Residential 1 Total area (ac): 0.088 1 - Roofs 1: 0.062 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 31 - Sidewalks 1: 0.009 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.017 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Control Practice 1: Biofilter CP# 1 (DS) - DS Biofilters # 1 1. Top area (square feet) = 320 2. Bottom aea (square feet) = 320 Depth (ft): 3. 3 4. Biofilter width (ft) - for Cost Purposes Only: 10

- 5. Infiltration rate (in/hr) = 0.5
- 6. Random infiltration rate generation? No
- 7. Infiltration rate fraction (side):
- 8. Infiltration rate fraction (bottom): 1

Front - InputData 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 3.6 12. Engineered soil depth (ft) = 213. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 0 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program 18. Initial water surface elevation (ft): 0 Soil Data Soil Type Fraction in Eng. Soil Biofilter Outlet/Discharge Characteristics: Outlet type: Broad Crested Weir 1. Weir crest length (ft): 5 2. Weir crest width (ft): 2 3. Height of datum to bottom of weir opening: 2.75 Outlet type: Vertical Stand Pipe

1. Stand pipe diameter (ft): 0.67

2. Stand pipe height above datum (ft): 2.5

Front - Output Summary SLAMM for Windows Version 10.2.1 (c) Copyright Robert Pitt and John Voorhees 2012 All Rights Reserved Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\Front.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Start of Winter Season: 12/02 End of Winter Season: 03/12 Model Run Start Date: 07/01/81 Model Run End Date: 08/01/81 Date of run: 08-25-2017 Time of run: 13:29:50 Total Area Modeled (acres): 0.088 Years in Model Run: 0.08 Runoff Percent Particulate Particulate Percent Volume Runoff Solids Solids Particulate

Solius Fai ciculace	(c_{11}, f_{1})	Volume	Conc
Yield Solids		VOLUME	conc.
(lbs) Reduction		Reduction	(mg/L)
Total of all Land Uses without Controls: 1.954 -	737.5	-	42.45
Outfall Total with Controls:	0	100.00%	0
Annualized Total After Outfall Controls:	0		

WinSLAMM v 10 Data File: [U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\West Side.mdb] - [Land Use Model]

Biofiltration Control Device

Drainage System Control Practice	B	Add	Sharp Crested Weir		Add	Other (Jutlet			E	vaporation	Add
Device Properties Biofilter N	lumber 1	Weit Lengt	(h (R)		Stage	Stans (P)	Other Ou	tflow 🔺			Evapotrans-	Exampleation
Top Area (sf)	280	Height from	n datum to		Number	ousile (u)	Rate (c	(±±)	Mo	inth	piration	(in/day)
Bottom Area (sf)	280	bottom of y	veir opening (It)		1			_	-		(in/day)	N.C. 2000
Total Depth (ft)	3.50	Remove	Broad Crested Weir-	Regrd	2			-	10	an		
Typical Width (It) (Cost est. only)	10.00	Weir crest	length (ft)	5.00	3			_	- Fe	ab		
Native Soil Infiltration Rate (in/hr)	0.500	Weir crest	width (ft)	2.00	4			_	M	ar		
Native Soil Infiltration Rate CDV	N/A	Height from	n datum to	0.50	.5			-	A	pr		
Infil. Rate Fraction-Bottom (0.001-1)	1.000	bottom of v	weir opening (ft)	2.50	Add	Evapol	ranspirati	on	M	ay		
Infil. Rate Fraction-Sides (0.001-1)	1.000		Vertical Chand Dine		Soil octori	u (caluratio			JL	in		
Rock Filled Depth (it)	0.00	Add	verucai stand ripe		moisture o	ontent, 0-11			JU	ui		
Rock Fill Porosity (0-1)	0.00	Pipe diame	ster [IT]	-	Soil field m	oisture cap	eitu (0-11		AL	bu		
Engineered Media Type	Media Data	Height abo	ove datum [It]		Permanent	willing poir	1 (0-1)		58	ep		
Engineered Media Infiltration Rate	3.60	Add	Surface Discharge I	Pipe	Supplemen	tal inigation	used?		0	ct		
Engineered Media Infiltration Rate COV	N/A	Pipe Diam	eter (ft)		Fraction of	available c	apacity		N	04		
Engineered Media Depth (ft)	2.00	Invert elev	ation above datum (it)		when irriga	tion starts (I)-1)		De	ec		
Engineered Media Porosity (0-1)	0.27	Number of	pipes at invert elev.		Fraction of	available o	apacity			Pla	nt Types	
Percent solids reduction due to Engineered Media (0,-100)	N/A	Add	Drain Tile/Underdra	iin	when irriga Fraction of	tion stops (I biofilter that	0-1] Lis vecetat	ed	1	2	3	4
Inflow Hydrograph Peak to Average		Pipe Diam	eter (R)		Plant type				-	1	-	
Flow Ratio	3.80	Invert elev	ation above datum (ft)		Root depti	1.00				-		
Number of Devices in Source Area or Upstream Drainage System	1	Number of	pipes at invert elev.		ET Crop A	djustment F	actor	· · · · ·	Cabaaak	_	Balta	sh Schamatic
C Activate Pipe or Box Storage	Pipe C Box	Use Ha	andom Number				Biofilter	Geometry	Schemati	IC		an Jonemaac
Diameter IIt		Infiltrati	ion Rate Uncertainty				- Li	5.00' -				
Length (it)			× n	-					<u> </u>			
Within Bioliter (check if Yes)	-	0.00	Figuration (9)									
Perforated (check if Yes)			cievación (it)					1				
Bottom Elevation (It above datum)		Est Surface	e Drain Time (hrs)									
Discharge Onlice Diameter (M		Eor. ordereor										
Select Native Soil Infiltration Ba	ate										_	
C Sand 8 in/hr C Cla	v loam - 0.1 in/h	r		3 50'			To	op of Engine	eered Media	1		
C Loamy sand 25 in/hr C Silt	v clav loam - 0.0	5 in/hr		1								
C Sandy Joam • 1.0 in/hr C Sar	ndv clav - 0.05 in	1/hr	6		2.50							
C Loam-0.5 in/hr C Silt	v clav - 0.04 in/h	ur.	Lopy Biofilter		21	00'						
C Silt Joam - 0.3 in/hr C Cla	e • 0.02 in/hr											
⊂ Sandy silt loam • 0.2 in/hr ⊂ Ra	in Barrel/Cistern	• 0.00 in/hr	Paste Biofilter Data									

X

West Side - InputData Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\West Side.mdb WinSLAMM Version 10.2.1 Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 07/01/81 Study period ending date: 08/01/81 End of Winter Season: 03/12 Start of Winter Season: 12/02 Date: 08-25-2017 Time: 13:45:13 Site information: LU# 1 - Residential: Residential 1 Total area (ac): 0.113 1 - Roofs 1: 0.038 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 0.024 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.051 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Control Practice 1: Biofilter CP# 1 (DS) - DS Biofilters # 1
1. Top area (square feet) = 280
2. Bottom aea (square feet) = 280
3. Depth (ft): 3.5
4. Biofilter width (ft) - for Cost Purposes Only: 10
5. Infiltration rate (in/hr) = 0.5
6. Random infiltration rate generation? No
7. Infiltration rate fraction (side): 1
8. Infiltration rate fraction (bottom): 1

West Side - InputData 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0 11. Engineered soil infiltration rate: 3.6 12. Engineered soil depth (ft) = 213. Engineered soil porosity = 0.2714. Percent solids reduction due to flow through engineered soil = 0 15. Biofilter peak to average flow ratio = 3.8 16. Number of biofiltration control devices = 1 17. Particle size distribution file: Not needed - calculated by program 18. Initial water surface elevation (ft): 0 Soil Data Soil Type Fraction in Eng. Soil Biofilter Outlet/Discharge Characteristics: Outlet type: Broad Crested Weir 1. Weir crest length (ft): 5 2. Weir crest width (ft): 2

3. Height of datum to bottom of weir opening: 2.5

West Side - Output Summary SLAMM for Windows Version 10.2.1 (c) Copyright Robert Pitt and John Voorhees 2012 All Rights Reserved Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\West Side.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Start of Winter Season: 12/02 End of Winter Season: 03/12 Model Run Start Date: 07/01/81 Model Run End Date: 08/01/81 Date of run: 08-25-2017 Time of run: 13:44:59 Total Area Modeled (acres): 0.113 Years in Model Run: 0.08 Runoff Percent Particulate Particulate Percent Volume Runoff Solids Solids Particulate (cu ft) Volume Conc. Yield Solids Reduction (mg/L)(lbs) Reduction

Total of all Land Uses without Controls:	640.5	-	74.14
2.964 -			
Outfall Total with Controls:	0	100.00%	0
0 100.00%			
Annualized Total After Outfall Controls:	0		
0			

rainage system conduct mactic	,	Add	Sharp Crested Weir		Add	Other D	utlet			Evaporation	Add
Device Properties Biofilter I	lumber 1	WeirLang	h [II]		Stage	Charles (11)	Other Ou	flova 🔺		Evapolitans-	
op Area (sfl	130	Height from	n datum to		Number	Stage (1)	Rate (c	fs)	Month	piration	E vapolation (in/dau)
Sotion Area [st]	130	bottom of +	veir opening (ft)	_	1					(in/day)	(((), (30)))
fotal Depth (ft)	3.00	Bemove	Broad Crested Wein	Reard	2	(_	Jan		
[upical Width [ft] [Cost est, only]	10.00	Weir crest	Jecoth (it)	5.00	3				Feb		
Native Soil Infiltration Bate [in/hr]	0.500	Weir creel	width (ft)	2.00	4				Mai	-	
Native Soil Infiltration Rate EOV	N/A	Height from	n datum to	2.00	5			-	Apr	-	
nfil. Rate Fraction-Bottom (0.001-1)	1.000	bottom of a	weir opening (it)	2.50	àdd	Evanote	an+nirati	0.0	May	-	
nfil. Rate Fraction-Sides (0.001-1)	1.000	1.1.1	New Jon Jon		Callmanait	(anh united	anspirad		Jun	-	
Rock Filled Depth (N)	0.00	Add	Vertical Stand Pipe		moisture co	rtent, 0-1)			Jul		
Rock Fill Porosity [0-1]	0.00	Pipe dam:	ster (It)		Soil field m	historie cana:	-itu (0-1)		Aug		
Ingineered Media Type	Media Data	Height ab:	ove datum (ft)		Permanent	witting point	(0-1)		Sep		
noineered Media Infiltration Flate	3.60	Add	Surface Discharge I	Pipe	Supplemen	tal imgation (used?		Oct		
Engineered Media Infiltration Plate COV	N/A	Pice Diam	eter (ft)		Fraction of	available ca	pacity		Nov	-	
Ingineered Media Depth (ft)	2.00	Inveit elev	abon above datum [ft]		when imigal	tion starts (D-	-1)		Dec		
ngineered Media Porosity (0-1)	0.27	Number	cipes at invertidey.		Fraction of	available ca	pacity		F	lant Types	
Percent volids reduction due to	N/A	Add	Drain Tile/Underdra	ain	when irrigal	tion stops (D-	-1) In compatial		1 2	2 3	4
Inginesied Media (0~100)		Pine Diam	abar (Ft)		Plant tuna	Diotnice unau	із теўская	20	-1	.	d is
how Batio	3.80	Invert elev	ation above datum [ft]		Boot depth	(fr)			_		-
Number of Devices in Source Area or	1	Number of	pipes at invert elev.		ET Crop Ad	fjustment Fa	clor				
Jpstream Drainage System	<u> </u>	Use R	andom Number			1	Biofilter I	Geometry S	Schematic	Reites	h Schematic
Activate Pipe or Eox 5 to age C	Pipe C Box	Genera	ation to Account for								
NOT COLORING TO MINING		Infiltrat	ion Rate Encertainty				-!	- 100			
Jiameter (it)								1	5		
Jameter (it) _ength (it)		1.00	nitial Water Surface			_					
Jameter (it) Length (it) Within Bioliller (check, if Yes)	=	0.00	nitial Water Suriace Elevation (R)			I	N .	· /			
Jameter (it) Length (it) Within Bioliller (check. if Yes) Perforated (check. if Yes)	3	0.00	nitial Water Surface Elevation (It)				_\				
Jameter (it) Length (it) Within Bioliller (check, if Yes) Perforated (check, if Yes) Bottom Elevation (it above catum)	3	0.00 Est. Surface	nitial Water Suriace Elevation (R) e Drain Time (hrs)					_/			

WinSLAMM v 10 Data File: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\East\East Side.mdb| [Land Use Model]

East Side - InputData Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\East\East Side.mdb WinSLAMM Version 10.2.1 Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 07/01/81 Study period ending date: 08/01/81 End of Winter Season: 03/12 Start of Winter Season: 12/02 Date: 08-25-2017 Time: 13:47:29 Site information: LU# 1 - Residential: Residential 1 Total area (ac): 0.066 1 - Roofs 1: 0.028 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.038 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Control Practice 1: Biofilter CP# 1 (DS) - DS Biofilters # 1 1. Top area (square feet) = 130 2. Bottom aea (square feet) = 130 3. Depth (ft): 3 4. Biofilter width (ft) - for Cost Purposes Only: 10 Infiltration rate (in/hr) = 0.55. Random infiltration rate generation? No 6. 7. Infiltration rate fraction (side): 1 8. Infiltration rate fraction (bottom): 1 9. Depth of biofilter that is rock filled (ft) 0 10. Porosity of rock filled volume = 0

```
East Side - InputData
11. Engineered soil infiltration rate: 3.6
12. Engineered soil depth (ft) = 2
13. Engineered soil porosity = 0.27
14. Percent solids reduction due to flow through engineered soil = 0
15. Biofilter peak to average flow ratio = 3.8
16. Number of biofiltration control devices = 1
17. Particle size distribution file: Not needed - calculated by program
18. Initial water surface elevation (ft):
                                         0
Soil Data
                                Soil Type Fraction in Eng. Soil
Biofilter Outlet/Discharge Characteristics:
   Outlet type: Broad Crested Weir
           1. Weir crest length (ft): 5
           2. Weir crest width (ft):
                                      2
```

3. Height of datum to bottom of weir opening: 2.5

East Side - Output Summary SLAMM for Windows Version 10.2.1 (c) Copyright Robert Pitt and John Voorhees 2012 All Rights Reserved Data file name: U:\Makepeace Engineering\2 Clients\Roger Lundsten 28\SLAMM\East\East Side.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\Wisconsin 2 year 24 hour.ran Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GE003.ppdx Start of Winter Season: 12/02 End of Winter Season: 03/12 Model Run Start Date: 07/01/81 Model Run End Date: 08/01/81 Date of run: 08-25-2017 Time of run: 13:47:18 Total Area Modeled (acres): 0.066 Years in Model Run: 0.08 Runoff Percent Particulate Particulate Percent Volume Runoff Solids Solids Particulate (cu ft) Volume Conc. Yield Solids

(lbs) Reduction			
Total of all Land Uses without Controls:	300.0	-	42.16
Outfall Total with Controls:	0	100.00%	0
Annualized Total After Outfall Controls:	0		
0			

Reduction

(mg/L)

SOIL EVALUATION - STORM

in accordance with Comm. 82.365 & 85, Wis. Adm. Code

Attach complete site plan on paper not less than 8 $1/2 \times 11$ include, but not limited to: vertical and horizontal reference point (BI cia וח slope, scale or dimensions, north arrow, and BM referenced to ne

Attach complete site plan on paper not less than 8 1/2 x 11 inches in size. Plan must include, but not limited to: vertical and horizontal reference point (BM), direct and percent slope, scale or dimensions, north arrow, and BM referenced to nearest road.						County Parcel I.D.					
Please print all information Personal information you provide may be used for secondary purposes (Privacy Law, s. 15.0-					Reviewed	d by				Date	
(m)). Property Owner				Property Location							
ThreeSixty Real Estate,	LLC			Gov. Lot	1/4	1/4	S	т	N	R	
Property Owner's Mailing Address				Lot #	Block #	Subd. Na	me or CSM#	#			
1243 Badger Street											
City	State	Zip Code	Phone Number	⊠City □ V	/illage [Town	Neares	st Road			
La Crosse	WI	54601	608-782-7368	La Crosse	-						

Drainage						
Area		🗌 sq. ft. 🗌 acres	Hydraulic Application Test Method:			
Optional:			······································			
Test Site Suitable for (Check all that apply)					
	Bio-retention		Morphological Evaluation			
Irrigation	trench					
Rain Garden	Grassed swale	Reuse	Double-Ring Infiltrometer			
Infiltration Trench	□ SDS (>15' wide)	⊠ Other	Other (specify)			

TP-1	Obs. #	 ☐ Boring ☑ Test Pit 	Ground Surface Ele	v. <u>674</u> Ft.	Depth to I	imiting factor	in.		
Horizon	Depth (in.)	Dominate Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr.
A	0-5	10YR 3/3	NONE	F.SL.	0.F.GR.	DL	GS	0	0.5
В	5-48	10YR 3/3	NONE	F.SL.	0.F.GR.	ML	GS	0	0.5
E	48-54	10YR 5/4	NONE	F.S.	0.F.GR.	ML	GS	0	0.5

TP-2 Obs. # Boring Test Pit

Ground Surface Elev. 673 Ft.

Depth to limiting factor _____ in.

Horizon	Depth (in.)	Dominate Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr.
В	0-37	10YR 3/3	NONE	F.SL.	0.F.GR.	ML	GS	0	0.5
E	37-67	10YR 5/4	NONE	F.S.	0.F.GR.	ML	GS	0	0.5

CST/PSS Name (Please Print)	Signature	CST/PSS Number
Brandon K. Wright	Backwit	1158379
Address	Date Evaluation Conducted	Telephone Number
2309 Palace Street, La Crosse, Wisconsin 54601	8/7/2017	608.781.7277

TP-3	Obs. #	 ☐ Boring ☑ Test Pit 	Ground Surface Ele	v. <u>673.5</u> F	t. Depth to I	imiting factor	in.		
Horizon	Depth (in.)	Dominate Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr.
В	0-16	10YR 3/3	NONE	F.LS.	0.F.GR.	ML	GS	0	0.5
В	16-65	10YR 4/4	NONE	F.S.	0.F.GR.	ML	GS	0	0.5

	Obs. #	Boring Test Pit	Ground Surface Ele Ft.	v	Depth to I	imiting factor	in.		
Horizon	Depth (in.)	Dominate Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr.

Test Results and/or Summary Comments