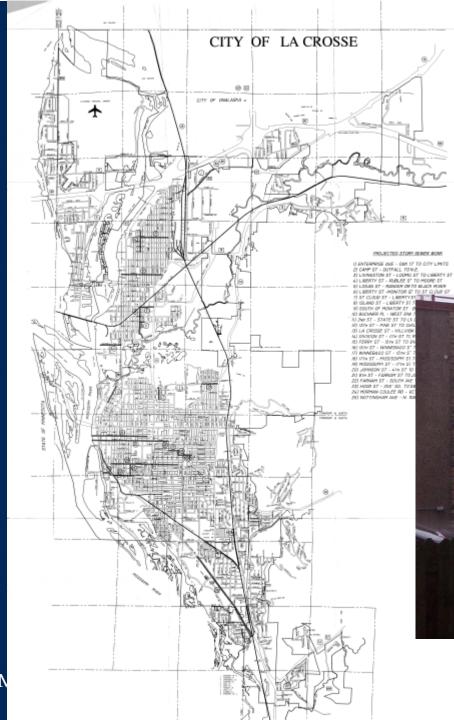
City-wide Stormwater Analysis

-presented to Council in September of 2017


Bernie Lenz City of La Crosse

with Rob Montgomery, & Michael Schwar (Montgomery Associates)

Montgomery Associates: Resource Solutions, LLC

www.ma-rs.org

Stormwater Issues

08/03/2004

Hydraulic Driven Need

Historic River Gauge 1891 Original gauge at the old Swing Span Bridge 1936 Moved to the foot of Mount Vernon Street at this apot.

1965 Record flood reading 17.9 feet April 24. 1993

Ebner's Coulce, taken from Grandad Bluff, La Crosse, Wis.

Complex, interconnected storm systems developed over time

www.ma-rs.org

• Overflows from system to system

Montgomery Associates: Resource Solutions, LLC

Contributing areas often change over the course of events

www.ma-rs.org

Why was modeling the system necessary?

- Complexity of the storm sewer system, including cross-connections
- Surface flow and flooding conditions require integrated hydrology and hydraulic simulation
- Tool for evaluating potential solutions

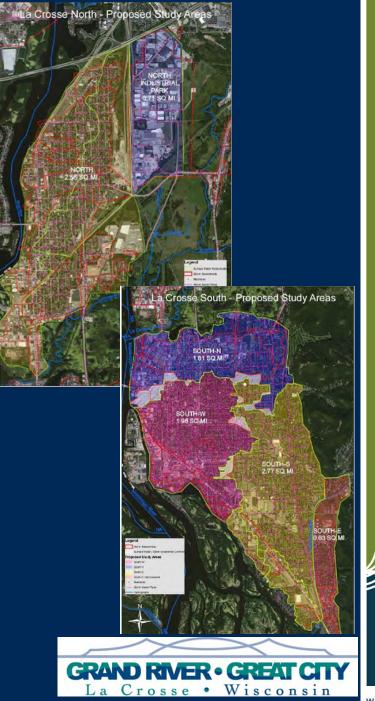
System Model

• FLO-2D/EPA-SWMM combination

ELO-2D Water Surface **Grid Element** Runoff enters the Elevation closed conduit if mm capacity is available. Return flow to the surface can occur when the capacity is Inlet. exceeded. node Closed Conduit Water Surface **Elevation Closed Conduit** System Figure 9. Surface and Closed Conduit Flow Exchange

2-D surface flow modeling using digital elevation data provided by the City at a 15-ft grid size – roads represented within DEM, buildings added as a separate layer

Approach


- Analysis of flooding problem areas
 - Identify five watersheds
 - Determine critical rain return intervals
 - Agree on performance criteria for evaluating problem areas
- Detailed analyses of five watersheds:
 - Existing conditions analysis ground-truthing with city staff
 - Problem areas identified
 - Typically five problem areas evaluated for gray infrastructure alternative solutions plus for green infrastructure
- Prioritization and detailed models
 - Consider other factors
 - Develop a 10-year plan

Watersheds Defined

- Five watershed plans (detailed models)
 - North Industrial Park
 - North Watershed
 - Pine Street Watershed
 - Johnson St Watershed
 - Pammel Creek
 Watershed

Design Criteria

• Goals:

- 10 -year event -Keep water in pipes
- 25 -year event -Reduce standing water in the street to 6 inches or less prevent intersection closures and eliminate ponding on adjacent properties
- 100-Year event Safe outlet

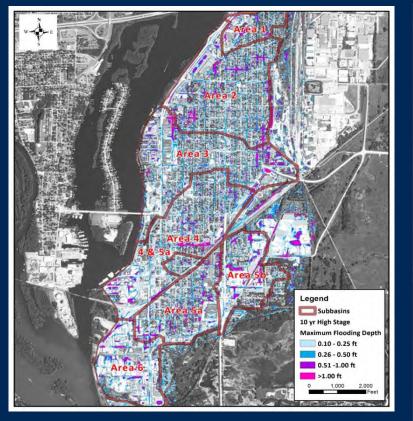
• Some solutions address flooding in one location, others address many locations

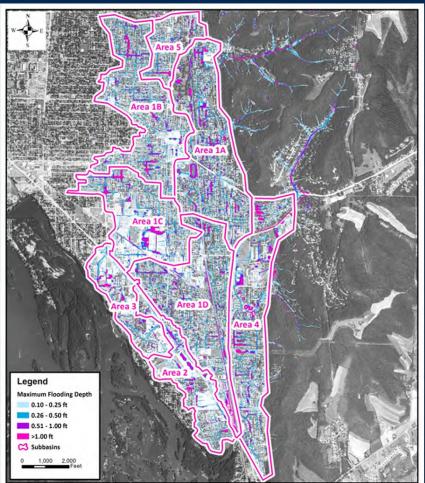
Rainfall Intensity Tested

Table 3-1. La Crosse Design Storm Rainfall Totals

	Storm Recurrence (years)						
Duration (hr)	1	2	10	25	100		
0.5	0.83	1.08	1.63	1.95	2.55		
1	1.05	1.37	2.07	2.48	3.23		
2	1.29	1.69	2.55	3.06	3.99		
3	1.43	1.87	2.82	3.38	4.40		
6	1.67	2.19	3.30	3.96	5.16		

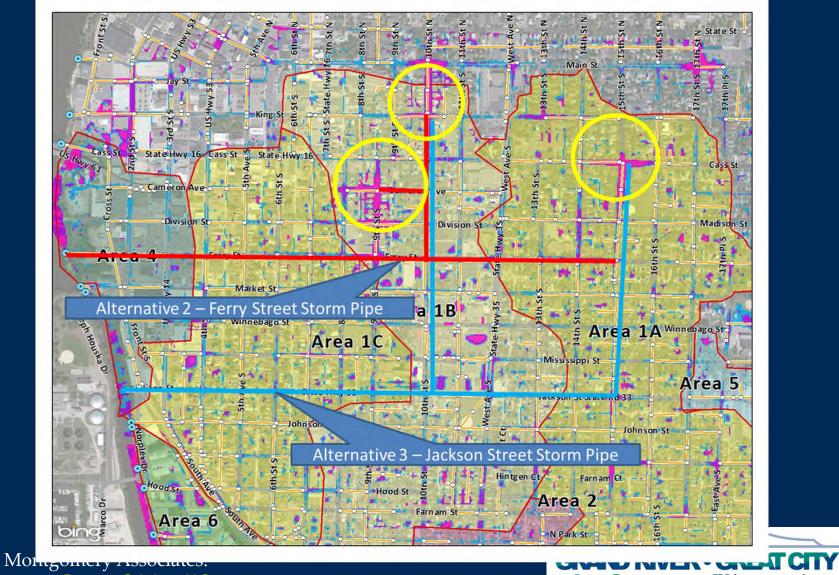
Approach


- Analysis of flooding problem areas
 - Identify live watersheds
 - Determine critical rain return intervals
 - Develop goals to achieve
- Detailed analyses of five watersheds:
 - Existing conditions analysis ground-truthing with city staff
 - Problem areas identified
 - Typically five problem areas evaluated for gray infrastructure alternative solutions plus for green infrastructure
- Prioritization and detailed models
 - Consider other factors
 - Develop a 10-year plan



Results

Basin maps, compare to observations



Montgomery Associates: Resource Solutions, LLC

www.ma-rs.org

Johnson Street Watershed

La Crosse • Wisconsin

Resource Solutions, LLC

Solutions – 24th/ Cass St

Montgomery Associates: Resource Solutions. LLC

www.ma-rs.ord

La Crosse • Wisconsin

Identify Solutions – Island Street

- Alternatives:
 - Alternative 4a (\$1,030,000)
 - Alternative 4b (\$1,180,000)

No.	ltem	Unit	Est. Qty	Unit Price	Total	Sources and	
		LF		ć a o	¢16 700	Assumptions Depth - 6 or less feet	
1	Remove Existing 12" RCP	LF	835	\$20	\$16,700	Depth - 6 to 10 feet	
2	Remove Existing 24" RCP	LF	123	\$25	\$3,075	Depth - 6 or less feet	
3	Remove Existing 42" RCP		370	\$25	\$9,250	Depth - 6 or less feet	
4	Remove Existing Manholes	EA.	5	\$300	\$1,500		
5	Remove Existing Manholes	EA.	5	\$400	\$2,000	Depth - 6 to 10 feet	
6	Install 24" RCP	LF	395	\$60	\$23,700	Depth - 6 or less feet	
7	Install 30" RCP	LF	465	\$130	\$60,450	Depth - 6 or less feet	
8	Install 30" RCP	LF	465	\$140	\$65,100	Depth - 6 to 10 feet	
9	Install 60" RCP	LF	395	\$180	\$71,100	Depth - 6 or less feet	
10	Install 36" RCP	LF	1025	\$150	\$153,750	Depth - 10 + feet	
11	Install 24" RCP	LF	440	\$70	\$30,800	Depth - 6 to 10 feet	
12	Install 18" RCP	LF	610	\$60	\$36,600	Depth - 6 or less feet	
13	Install 48" Stormwater Manholes	EA.	4	\$2,500	\$10,000	Depth - 6 or less feet	
14	Install 48" Stormwater Manholes	EA.	1	\$2,750	\$2,750	Depth - 6 to 10 feet	
15	Install 60" Stormwater Manholes	EA.	2	\$4,750	\$9 <i>,</i> 500	Depth - 6 to 10 feet	
16	Install 60" Stormwater Manholes	EA.	3	\$5,000	\$15,000	Depth - 10 + feet	
17	Install 72" Stormwater Manholes	EA.	1	\$5,750	\$5,750	Depth - 6 to 10 feet	
18	Install 84" Stormwater Manholes	EA.	1	\$6,750	\$6,750	Depth - 6 to 10 feet	
19	Install 84" Stormwater Manholes	EA.	2	\$7,000	\$14,000	Depth - 10 + feet	
20	Install 96" Stormwater Manholes	EA.	1	\$8,500	\$8,500	Depth - 6 or less feet	
21	Install 96" Stormwater Manholes	EA.	1	\$9,000	\$9,000	Depth - 10 + feet	
22	Install 120" Stormwater Manholes	EA.	1	\$13,000	\$13,000	Depth - 6 or less feet	
23	Install Outfall Structure (60" RCP)	EA.	1	\$2,000	\$2,000	Depth - 6 or less feet	
24	Upgrade Pump Station	EA.	1	\$98,800	\$98,800		
25	Upgrade Pump Station	LS	1	\$103,330	\$103,330	Provided by xylem, Pewaukee, WI	
26	Stormwater Bypass	LS	1	\$20,000	\$20,000		
	Contingency (30%) \$237,722						
	Total Project Costs \$1,030,000						

Draft Estimated Costs – City Wide (Gray Infrastructure Solutions)

- North Industrial Park \$600,000
- North Watershed \$2,900,000
- Pine Street Watershed \$2,300,000
- Johnson Street Watershed \$5,300,000
- Pammel Creek Watershed \$9,400,000
- Total = \$20,500,000

(Subject to revision)

Draft Estimated Costs – City Wide (Gray Infrastructure Solutions)

- Things to Remember:
 - These are the costs for stormwater components only
 - Assumed to be done as part of a larger CIP project (street, water, sewer)
 - If done as stand-alone, costs may escalate by 2-3x or more
 - Different alignments could increase costs
 - Implementation of green infrastructure can reduce need/size of projects

Approach

- Analysis of flooding problem areas
 - Identify live watersheds is a
 - Determine critical rain return intervals
 - Develop goals to achieve
- Detailed analyses of five watersheds:
 - Existing conditions analysis ground-truthing with city staff
 - Problem areas identified
 - Typically five problem areas evaluated for gray infrastructure alternative solutions plus for green infrastructure
- Prioritization and detailed models
 - Consider other factors
 - Develop a 10-year plan

Prioritization – Engineering Criteria

- Public Property Impacts
- Private Property Impacts
- Benefits to Street Flooding
- Benefits to Private Property Flooding
- Benefits to Intersection Closure
- Street Condition
- Water Main Condition
- Sanitary Sewer Condition
- Sustainability
- Cost

Prioritization – Engineering Criteria

Table 5-2. Ratings of Effective Alternative Projects									
	Rating Objects								
Alternative	Probable Cost	Public Property Construction Impacts	Private Property Construction Impacts	Street Flooding Benefits	Private Property Flooding Benefits	Intersection Closure Benefits	Coordination with other CIP Projects	Sustainability	Rating Total
Maximum Points	15	5	5	20	20	20	5	10	100

Prioritization

			A	lternativ	<i>'</i> e	
		Maximum Points	А	В	С	
	Public Property Construction Impacts	5	1	1	5	
	Private Property Construction Impacts	5	5	4	4	
ects	Street Flooding Benefits	20	12	12	4	
Ratings Objects	Private Property Flooding Benefits	20	8	12	0	
Rating	Intersection Closure Benefits	20	16	20	20	
	Coordination with other CIP Projects	20	20	20	4	
	Sustainability	10	2	2	2	
	Rating Total	100	64	71	39	
	Construction Cost (\$100,000)		20	25	15	
	Cost Effectiveness		3.2	2.84	2.6	

Used model output to quantify flooding benefits

Coordinate with reconstruction of aging streets and pipes

Montgomery Associates: Resource Solutions, LLC

www.ma-rs.org

Green Infrastructure

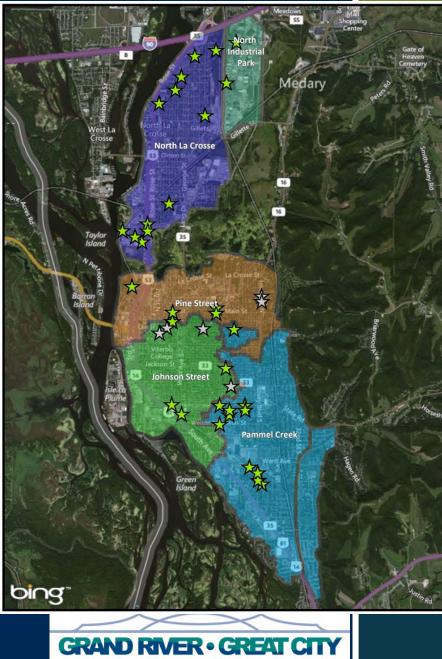
Contrasting approach to gray infrastructure (pipes and pumps)

- Reduce flows by implementing throughout basin
 - Pervious pavement
 - Bio-retention
- Cumulative effects benefits grow over time
- Implement through SWU
- Benefits occur for all storms and throughout watershed, not just one or two intersections
- Additional benefits (water quality, aesthetics)

RIVER • GREAT CITY

rosse • Wisconsin

Factors that Influence the Cost of GI to the City


- Constructed opportunistically
 - As a portion of work already being constructed
 - Over time through numerous projects
- SWU credits lead to private investment

 Owners determine if it is better to construct GI or pay SWU fees
- MS4 compliance – Double credits

Green Infrastructure

- GI more effective in some areas
 - Widespread flooding driven by large volumes
 - Long pipe runs needed to address issues
- Gray infrastructure more effective in others
 - Flooding only in specific areas
 - Flooding due to relatively short constrictions
- Requires 40% implementation to be effective

Crosse • Wisconsin

What have we gained from this modeling effort?

- Better understand the mechanisms/causes of stormwater run-off flooding
- Quantified the problem
- Have an analytically derived prioritization scheme based on engineering criteria
- Integrated hydrology/hydraulic model to use as a basis for final design

Recommended Plan Based On.....

- Evaluate alternative solutions
- Street condition/repair need
- Condition of the other City utilities
- Look at other private facilities in ROW
- Bring in non-engineering criteria
- Field experience/institutional knowledge

Plan to be implemented through C.I.P.

Storm Water Utility Funds

End of Year	Balance
2012	\$415,100
2013	\$2,147,300
2014	\$3,605,300
2015	\$4,200,000
2016	\$5,006,600
2017	\$5,362,160
2018*	\$4,700,000

(annual revenue ~2.3 Million)

Per ordinance:

-Stormwater <u>Quality</u> projects funded 100% by SWU -Stormwater <u>Quantity</u> projects funded <u>50%/50% by SWU/City</u>

• Open spreadsheet

Montgomery Associates: Resource Solutions, LLC

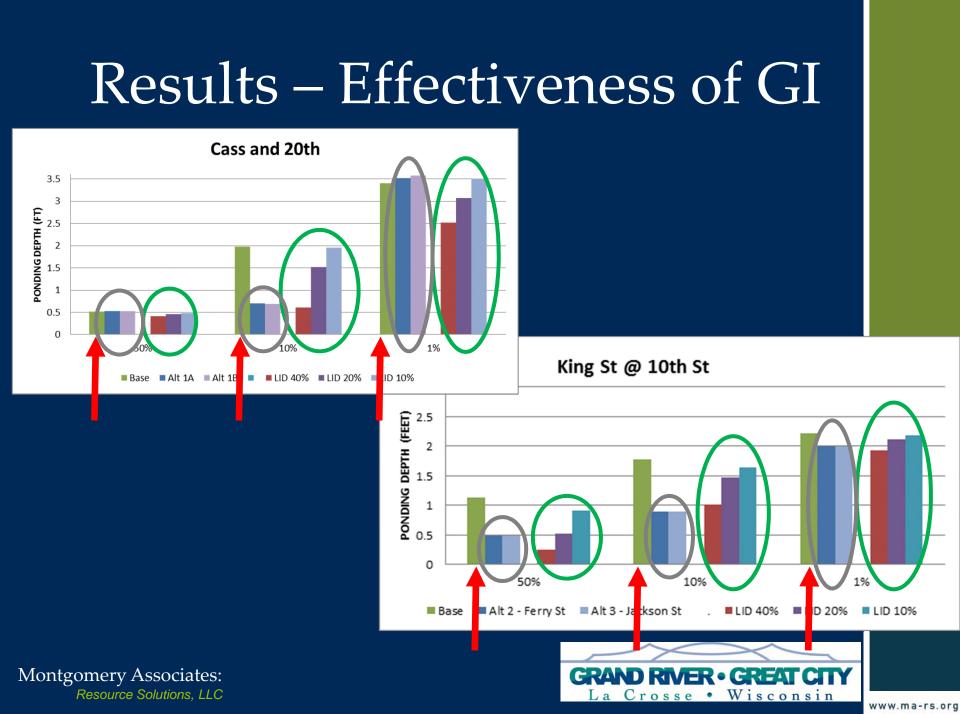
www.ma-rs.org

Questions / Discussion

Results – North Industrial Park

Stormwater Issues in the City of La Crosse

• Sandy, well-infiltrating soils and subsoils



Implementing green infrastructure (GI) approaches through stormwater utility

CRAND RIVER • CREAT CITY La Crosse • Wisconsin

