

Meeting Agenda

Commercial/Multi-Family Design Review Committee

Friday, July 18, 2025	9:00 AM	Virtual via Zoom

The meeting is conducted through video conferencing. Members of the public will be able to attend the meeting via video conferencing with the link below.

Join Zoom Meeting Click this link (or typing the URL in your web browser address bar): https://cityoflacrosse-org.zoom.us/j/82799188943?pwd=pAMS3MbJusyBqR9mjCiK3jH6cAP0rk.1

Meeting ID: 827 9918 8943 Passcode: 212646

Dial by your location 1 312 626 6799

If you wish to speak please provide written comments by emailing acklint@cityoflacrosse.org, using a drop box outside of City Hall or mailing the Department of Planning, Development, and Assessment at 400 La Crosse St, WI 54601

Call to Order

Agenda Items:

1. 25-0762 Review of plans for a new building located at 1801 Losey Blvd. (Central HS Greenhouse) <u>Attachments:</u> Project Plans 7-18-25 Elevations 7-18-25 Location/Site Plan 7-18-25 Project Specifications 7-18-25 Greenhouse Calculations 7-18-25

Foundation Plans 7-18-25

Adjournment

Notice is further given that members of other governmental bodies may be present at the above scheduled meeting to gather information about a subject over which they have decision-making responsibility.

NOTICE TO PERSONS WITH A DISABILITY

Requests from persons with a disability who need assistance to participate in this meeting should call the City Clerk's office at (608) 789-7510 or send an email to ADAcityclerk@cityoflacrosse.org, with as much advance notice as possible.

City of La Crosse, Wisconsin

City Hall 400 La Crosse Street La Crosse, WI 54601

Text File File Number: 25-0762

Agenda Date:

Version: 1

Status: Agenda Ready

File Type: Review of Plans

In Control: Commercial/Multi-Family Design Review Committee

Agenda Number: 1.

STRUCTURAL NOTES GENERAL REQUIREMENTS NOTES & DETAILS ON THE DRAWINGS SHALL TAKE PRECEDENCE OVER THESE GENERAL NOTES.

ALL MATERIALS AND WORK PERFORMED SHALL CONFORM TO THE REQUIREMENTS OF THE 2018 WISCONSIN COMMERCIAL BUILDING CODE INCLUDING LOCAL ORDINANCES, AMENDMENTS, AND EXCEPTIONS.

ALL MATERIAL SHALL BE FURNISHED AS SHOWN HEREIN UNLESS THE OWNER OR ENGINEER APPROVES EQUAL ALTERNATIVES.

NO CHANGES ARE TO BE MADE TO THESE PLANS WITHOUT THE KNOWLEDGE AND WRITTEN CONSENT OF UNITED GREENHOUSE SYSTEMS, INC. AND THE GREENHOUSE DESIGN ENGINEER.

THE CONTRACT DRAWINGS AND SPECIFICATIONS REPRESENT THE FINISHED STRUCTURE AND DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURE INCLUDING, BUT NOT LIMITED TO BRACING AND SHORING. OBSERVATION VISITS TO SITE BY THE ENGINEER AND/OR THE ENGINEER'S REPRESENTATIVE(S) SHALL NOT INCLUDE INSPECTION OF THE PROTECTIVE MEASURES OR THE CONSTRUCTION PROCEDURES.

DESIGN LOADS

<u>00F:</u>	GROUND SNO SNOW IMPOR SNOW LOAD ROOF THERM	TANCE FA EXPOSUR	CTOR (Is E FACTO	a) = 1.0 R (Ce) = 0.85) = 1.0 (CONTINU	IOUSLY HEATE	
	ROOF SLOPE SLOPED ROO LIVE LOAD = DEAD LOAD (DEAD MISC. MISC. IS	F/FLAT R 20 PSF (TOP CHO LOAD (BC	OOF SNC (REDUCI RD) = 3 TTOM CH	0.67)W (Ps) BLE PEI 3 PSF IORD) =	= 16 F R ASCE7) : 5 PSF		_/)
<u>'IND:</u>	WIND SPEED WIND EXPOSI WIND RISK C ENCLOSURE INTERNAL PR COMPONENT	JRE = B ATEGORY CLASSIFIC ESSURE (= II ATION = COEFFICIE	ENCLOS	SED pi) = ±(CC)
EISMIC:	SEISMIC SIT SEISMIC DES SEISMIC IMF SPECTRA RE FORCE RES – ORD	E CLASS SIGN CATH PORTANCE SPONSE STING SY MOMEN EL CONC. EL CONC. SE SHEAR ROCEDURI	= D EGORY = FACTOR COEFF. STEM: T FRAME BRACED (W x C	A (I) = Sds = S OF S FRAME s) = W IIVALENT	D.057 Sc FEEL S x 0.017	MAX	
CO	MPONENT &	& CLADI				· /	
BUILD	ING AREA	1			<u>area sc</u> 25	50	
NTERIOF EDGE R CORNER NTERIOF EDGE W	OOF ROOF R WALL	-21 -37 -56 -25 -31	7.9 5.0 5.8	-3 -5 -2	1.0 3.9 1.2 4.4 9.0	$ \begin{array}{r} -20.4 \\ -30.9 \\ -47.6 \\ -23.3 \\ -26.9 \\ \end{array} $	
edge z	one strip wi	DTH (FT)	4.2			·	
	WISCONSIN					REQUIREMENTS	3
	UM COMPRES		ENGTH OF = 3,000		RETE (f'c) AT 28 DAYS	SHALL BE:
	AL STEEL (VAL STEEL TUBING			000 PSI	(ASTM A	500, GRADE (C)
STEEL	_ TUBING (SQ					LIED TESTS) LIED TESTS)	
4" HAT TOP CHORDS			000 PSI			50)	
3" H/	AT PURLINS/G	IRTS	Fy=55,0	00 PSI	(ASTM A	1011, GRADE	55)
WELD	CTURAL PLATE ING ELECTROE E 5 BOLTS	DES		00 PSI (AWS D1 ,000 PS	.1)	572, GRADE 5	50)
. BOLTS	ARE TO BE	GRADE 5	OR AST	M A325	(SNUG-	TIGHT INSTALL	ATION).
TE: BRA	CING ASSEMB	LIES MUS	T HAVE	A SAFE	WORKING	LOAD OF HA	LF THE

RESPECTIVE CABLE BREAKING STRENGTHS SHOWN BELOW 3/16" DIAM. BRACING CABLE-7X19 STRAND BREAKING STR. = 4200 LBS 1/4" DIAM. BRACING CABLE-7X19 STRAND BREAKING STR. = 7000 LBS 3/8" DIAM. BRACING CABLE-7X19 STRAND BREAKING STR. = 14400 LBS (SEE PLANS FOR BRACE CABLE SIZES AND LOCATIONS)

ALL COLD-FORMED MEMBERS ARE TO BE GALVANIZED SHEET WITH MIN. MATERIAL THICKNESSES OF; 18 GA. = .0516, 16 GA. = .0635, 14 GA. = .0785, 12 GA. = .1084

GREENHOUSE ROOF AND WALL CLADDING (PANEL) IS NOT A DESIGNED ELEMENT. ANY MAINTENANCE MUST BE PERFORMED IN A MANNER THAT DOES NOT SUBJECT CLADDING TO THE CONCENTRATED LOAD OF A MAINTENANCE WORKER.

UNITED GREENHOUSE SYSTEMS, INC. IS A COMPONENT METAL BUILDING/GREENHOUSE MANUFACTURER AND SUPPLIER, AND 4TH DIMENSION DESIGN, INC. IS THE STRUCTURAL ENGINEER FOR THE STEEL STRUCTURE, NEITHER OF WHICH ARE TO BE CONSIDERED TH PROJECT DESIGN PROFESSIONAL OF RECORD. THE DESIGN OF ANY MATERIALS NOT DIRECTLY SUPPLIED BY UNITED GREENHOUSE SYSTEMS, INC. IS NOT PROVIDED UNDER THE SCOPE OF THIS CONTRACT.

UNITED GREENHOUSE SYSTEMS AND 4TH DIMENSION DESIGN TAKE NO RESPONSIBILITY FOR THE EVALUATION OF ANY EXISTING OR ADJACENT STRUCTURES WHOSE CONDITION(S) MAY BE AFFECTED IN ANY WAY BY THE PRESENCE OF THE GREENHOUSE.

DESIGN METHOD

DESI ТН

STF

BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318-14)

MANUAL OF STEEL CONSTRUCTION, ALLOWABLE STRESS DESIGN

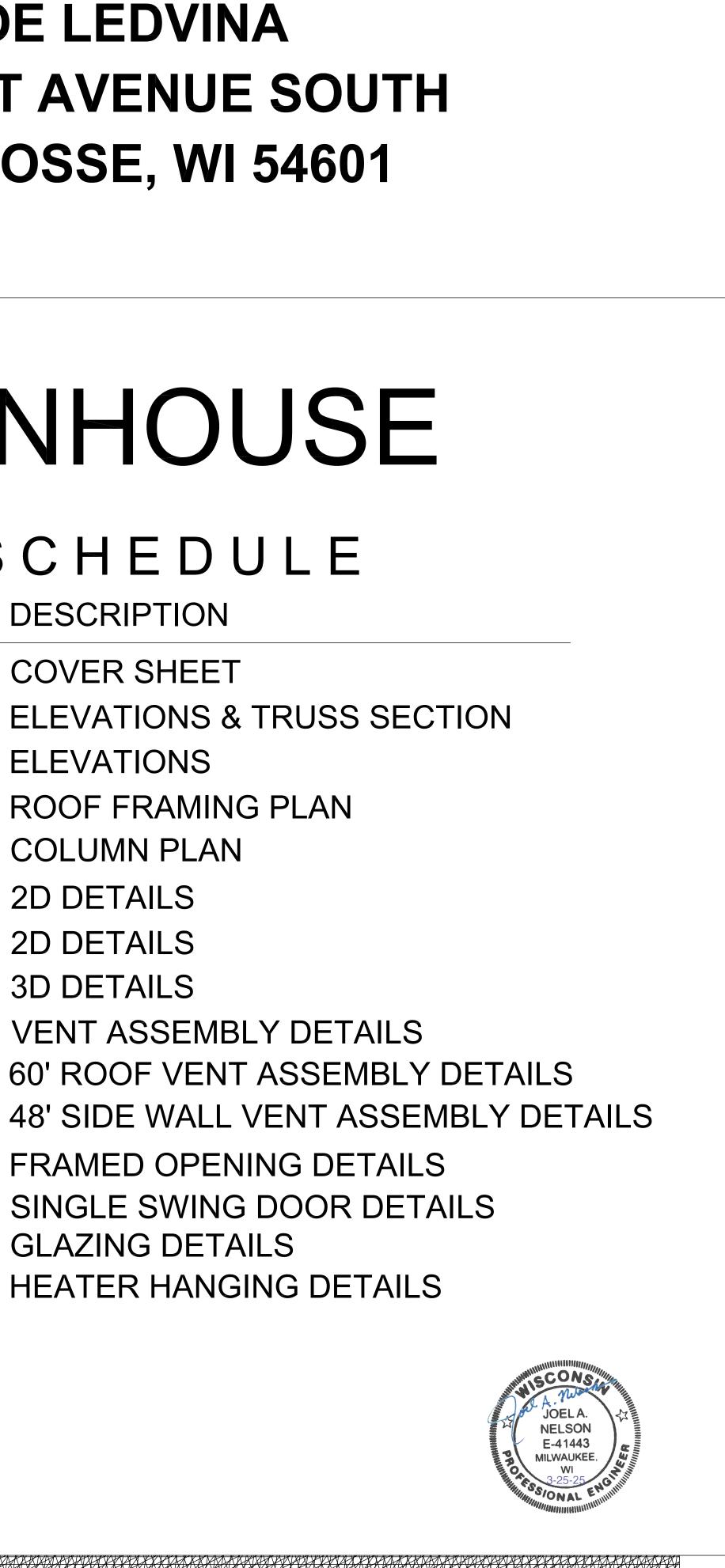
(AISC 360-10)

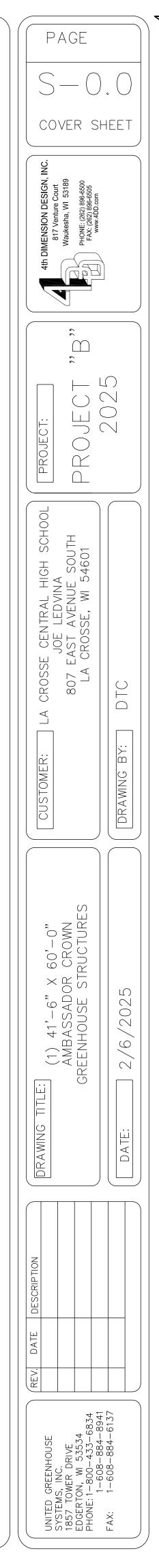
COLD FORMED STEEL DESIGN MANUAL (AISI S100-12)

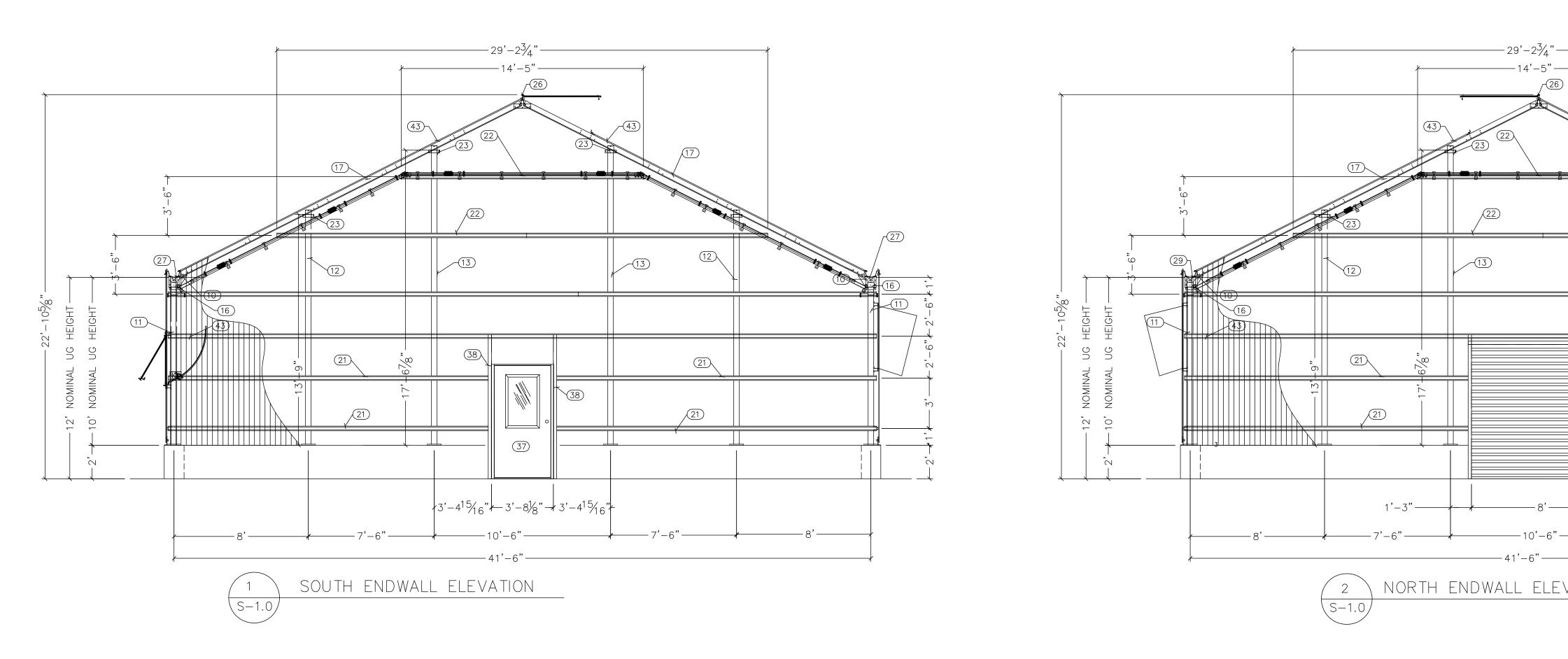
STRUCTURAL STEEL

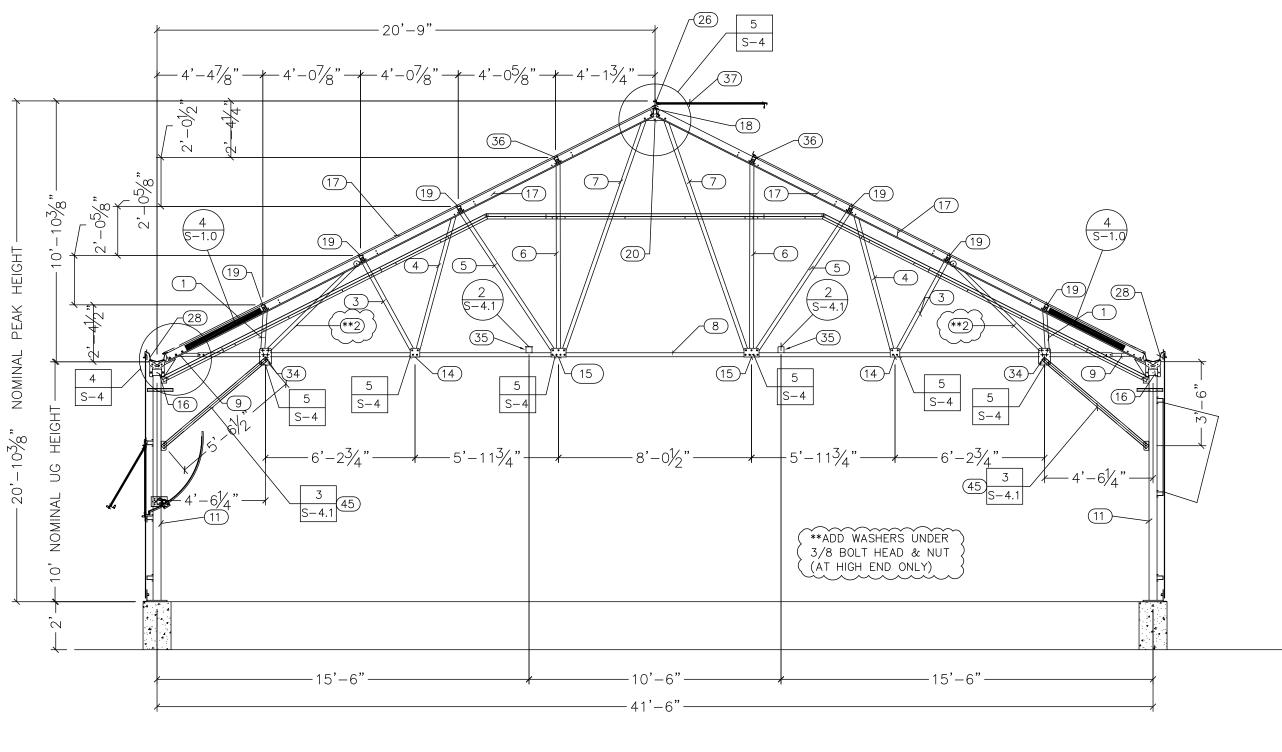
ALL STRUCTURAL STEEL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS OF ASTM AND SHALL BE FABRICATED AND ERECTED ACCORDING TO AISC/AISI SPECIFICATIONS. WELDING SHALL CONFORM TO THE LATEST EDITION OF AWS D1.1. ALL WELDING SHALL

BE PERFORMED BY APPROVED CERTIFIED WELDERS. NO HOLES, OTHER THAN THOSE SPECIFICALLY DETAILED, SHALL BE ALLOWED THROUGH STRUCTURAL STEEL MEMBERS.

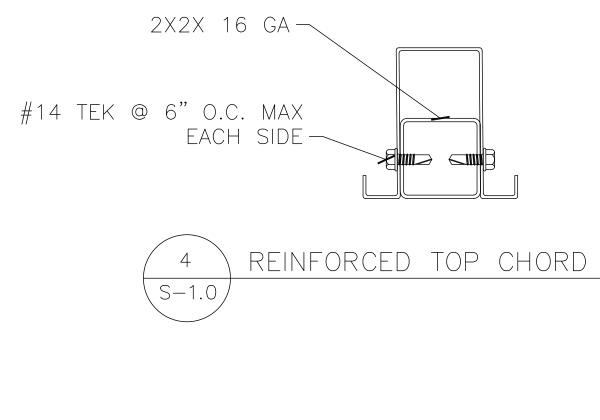

ERECTION OF STEEL MEMBERS SHALL NOT COMMENCE UNTIL ALL CONCRETE/MASONRY ELEMENTS HAVE ATTAINED AT LEAST 75% OF THEIR INTENDED MINIMUM COMPRESSIVE STRENGTH.


LA CROSSE CENTRAL HIGH SCHOOL **JOE LEDVINA 807 EAST AVENUE SOUTH LA CROSSE, WI 54601**


GREENHOUSE

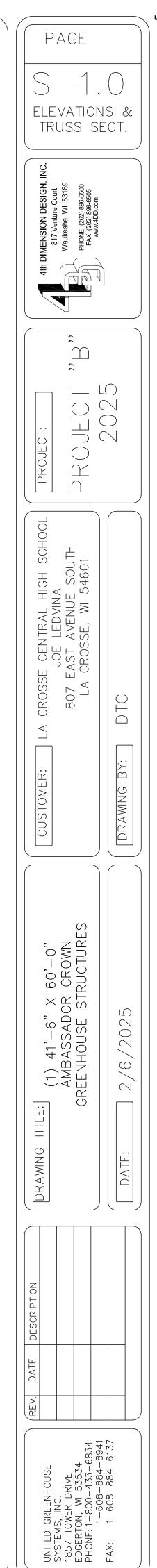

DRAWING SCHEDULE

PAGE NUMBER	DESCRIPTION
S-0.0	COVER SHEET
S-1.0	ELEVATIONS & TRUSS
S-2.0	ELEVATIONS
S-3.0	ROOF FRAMING PLAN
S-3.1	COLUMN PLAN
S-4.0	2D DETAILS
S-4.1	2D DETAILS
S-5.0	3D DETAILS
S-6.0	VENT ASSEMBLY DET
S-6.1	60' ROOF VENT ASSEI
S-6.2	48' SIDE WALL VENT A
S-7.0	FRAMED OPENING DE
S-7.2	SINGLE SWING DOOR
S-8.0	GLAZING DETAILS
S-9.0	HEATER HANGING DE

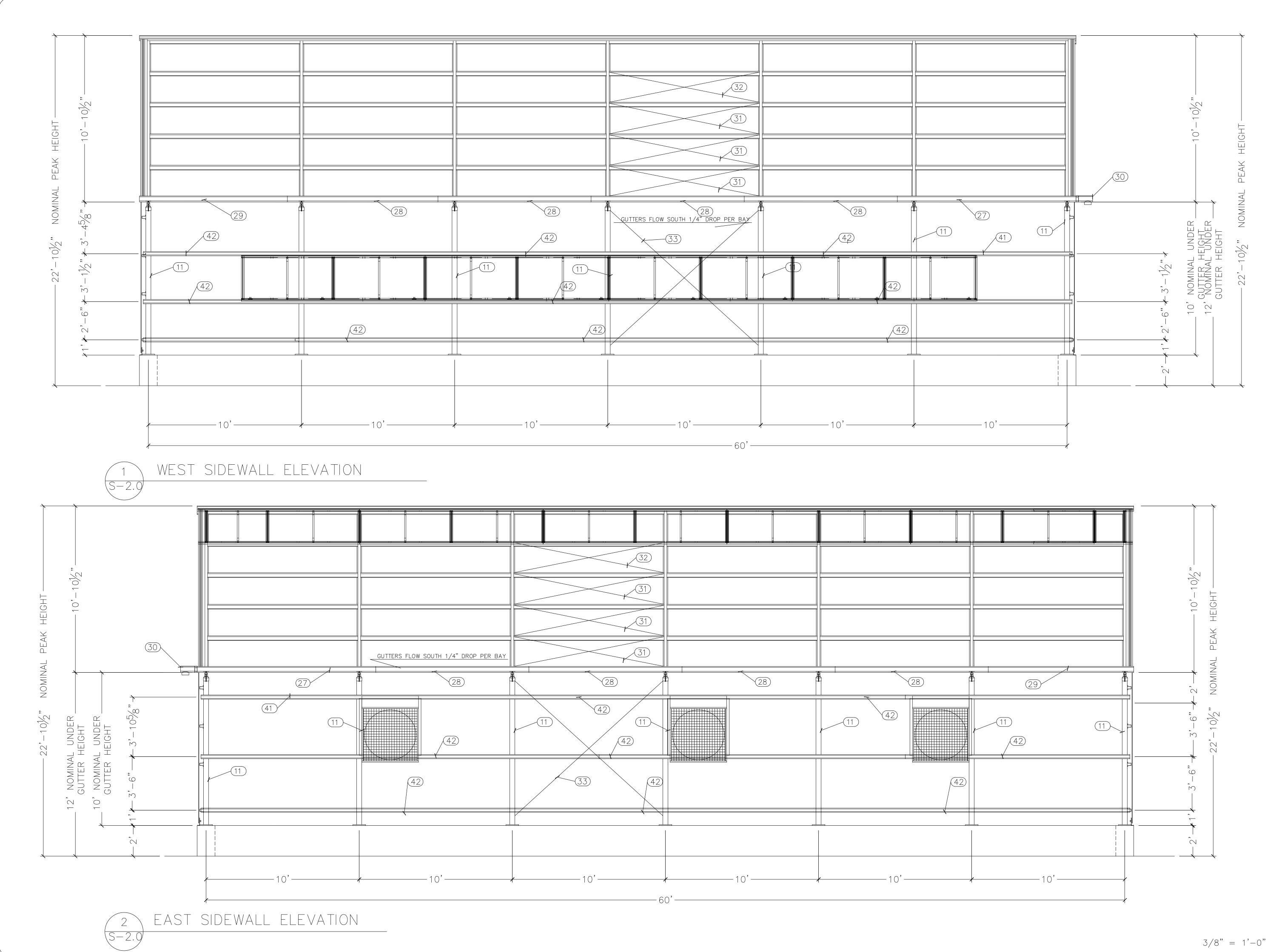


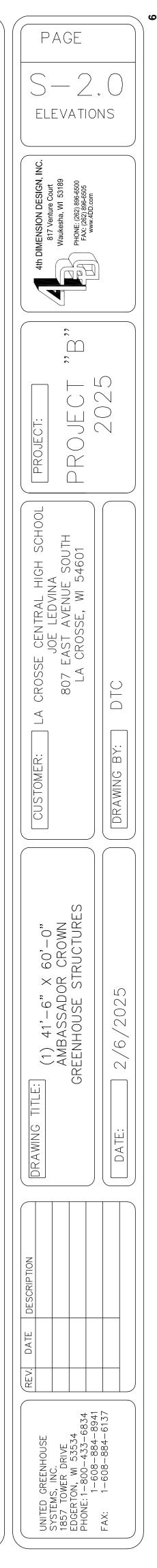
TRUSS SECTION 3 S-1.0

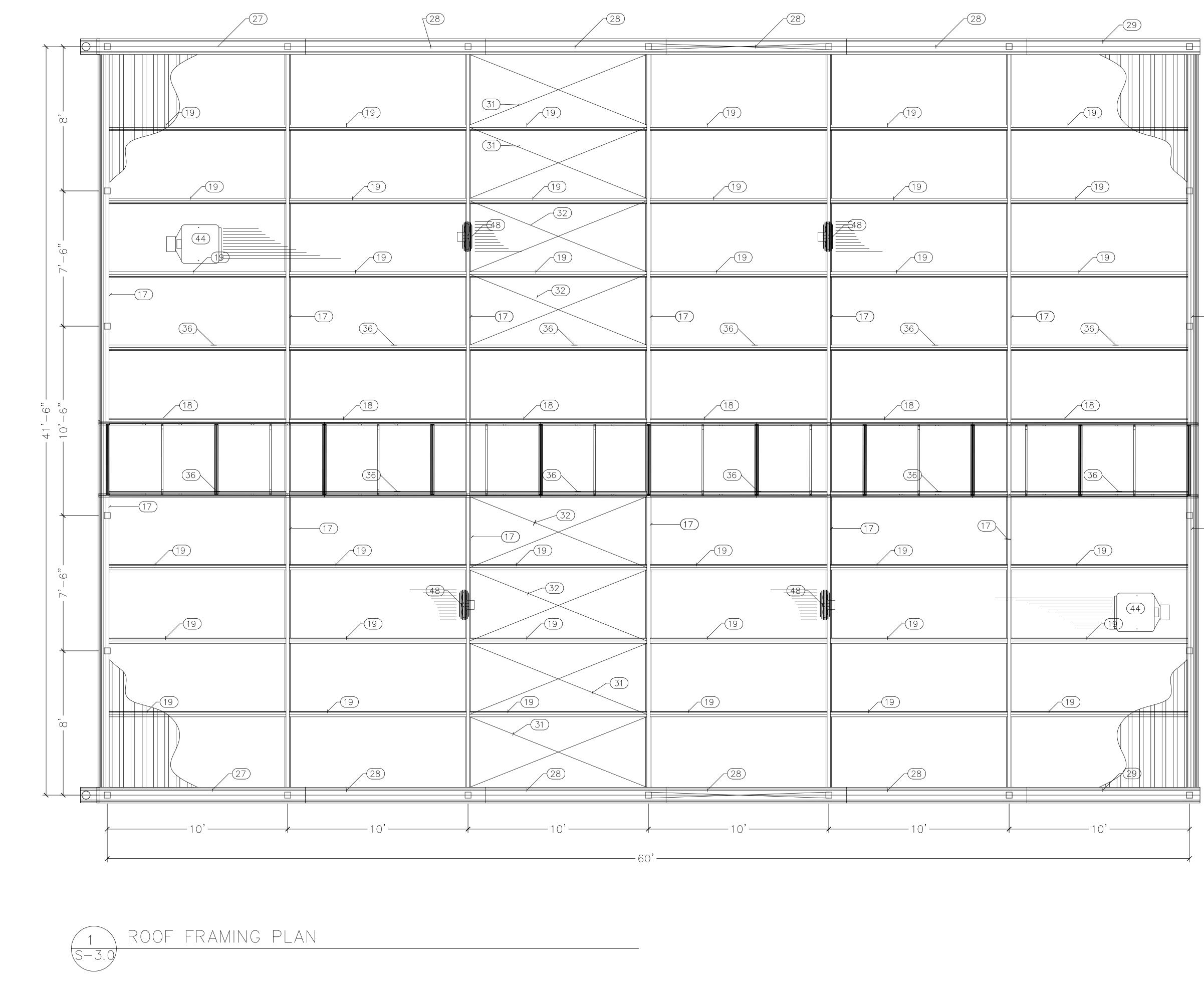
)							
						(29)
			T I				<u> </u>
							(11) ⁶ 0
						l'	2,
		- \					
				38		\ \	
			(21)				Ň.
						38	_
							N I
			(21)		0		
			Ý				`
		╡┼┼┵	<u></u>	┶──┤║ (37)		<u>`</u>
							, N
		 			i		
					1 /		. 4 -
8'			—1'−3" 2'−1 ¹⁵ ⁄16" —	←───┟── З'-	-8½"+		·2'-1'5⁄16
<u> </u>			7' -6"	¢	- 8'		
-41'-6"						}	
ALL ELE\	/ A TI	ON					
	, , , , , , ,						
			RIPTION		PART #		
	1		TUBE 2"X 16GA. X 20-		FOS3AC		
	2		TUBE 2"X 16GA. X 61-		F0S3AC		
	3			-3/4 HC	FOS3AC		
	4			-1/4 HC	FOS3AC		
	5			-11/16 HC	FOS3AC		
	6		TUBE 2"X 16GA. X 93-		FOS3AC		
	7		TUBE 2"X 12GA. X 122		F4S3A1		
	8		OM CHORD 2" X 457" >		COS3D4	157	
	9	HEEL	PL. 10 GA. W/10GA. G				
	10	HEEL	PL. 10 GA. W/10GA. G				
	11		TUBE 4" SQ. X 152" X		C95421		
	12			13GA.	C95421		
	13			13GA.	C95422		
	14	BRAC			S00019		
	15	BRAC			S00019		
	16		ER BRACKET FOR 4" SC		C01532		
	17		1'6" TOP CHORD X 16G		C012D2		
	18		IN RIDGE $9-1/2$ X16 GA)69.375R	
	19		$IN 9-1/2 \times 69.375 \times 10^{-1}$		P009D0		
	20		CHEVRON ASSY 6/12		S00001		
	21		9-1/2 X 260 X 18GA.		G09502		
	22		9-1/2 X 178.5 X 18GA		G09501		
	23	4 S(Q. COLUMN TO TOP CHO	NKD	B00040	000	
	24 25						
	25	<u> </u>		$(1 \land \land$	A 0 4 1 0 4	11/151)	
	20	ALUN	IINUM RIDGE BAR 6/12	(144,101)	LAQ4101	44(151)	
		DESC	RIPTION		part #		
	27		ER CR 14GA. START FO			2145.75	
	28		ER CR 14GA. INTER FOR			2121.75	
	29		ER CR 14GA. STOP FOR			2101.75	
	30		ER OUTLET ASSY 13" W		G00924		
	31	CABL	E 3/16" W/ EYEBOLT X		C55621		
	32	CABL	E 3/16" W/ SWAYBRAC		C55631		
	33		E 1/4" X 224"		C55812	24	
	34	PLAT	E ,BOTTOM CHORD KNEE	BRACE	S00019	82/KR	
	35	TUBE	1-1/2" SQ. X 16GA. X	288	C90162	.88	
	36	PURL	IN 9-1/2 X 69.375 X 1	2 GA)69.375X	
	37	PLYC	O SINGLE SWING DOOR	3'-6" X	DSO42>		
	38	6005	" JAMB - 3"		J00301		
	39		EFER 12" HAF FAN		FHVS12		
	40		TUBE 4" SQ. X 264" X	13GA.	C95422		
	41	GIRT			G09501		
	42		9-1/2 X 291 X 18GA.		G09502		
			N 8MM PCSS CLEAR		LEX86_		
	44		NE UNIT HEATER HSB34	0	HSB340		
	45		BRACE 2" X 16GA. X		F2S3CC		
	46						

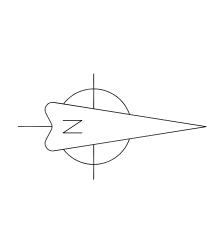

46 47

49

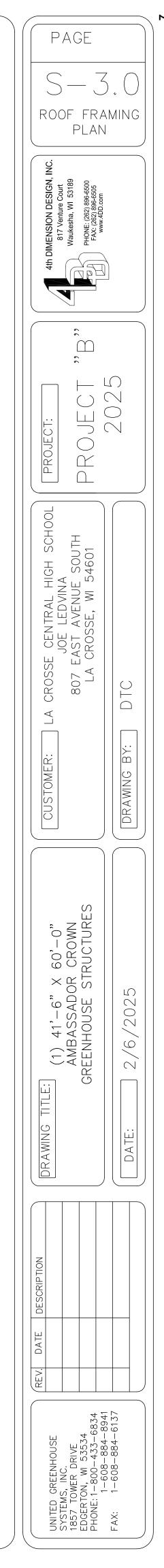

(17)

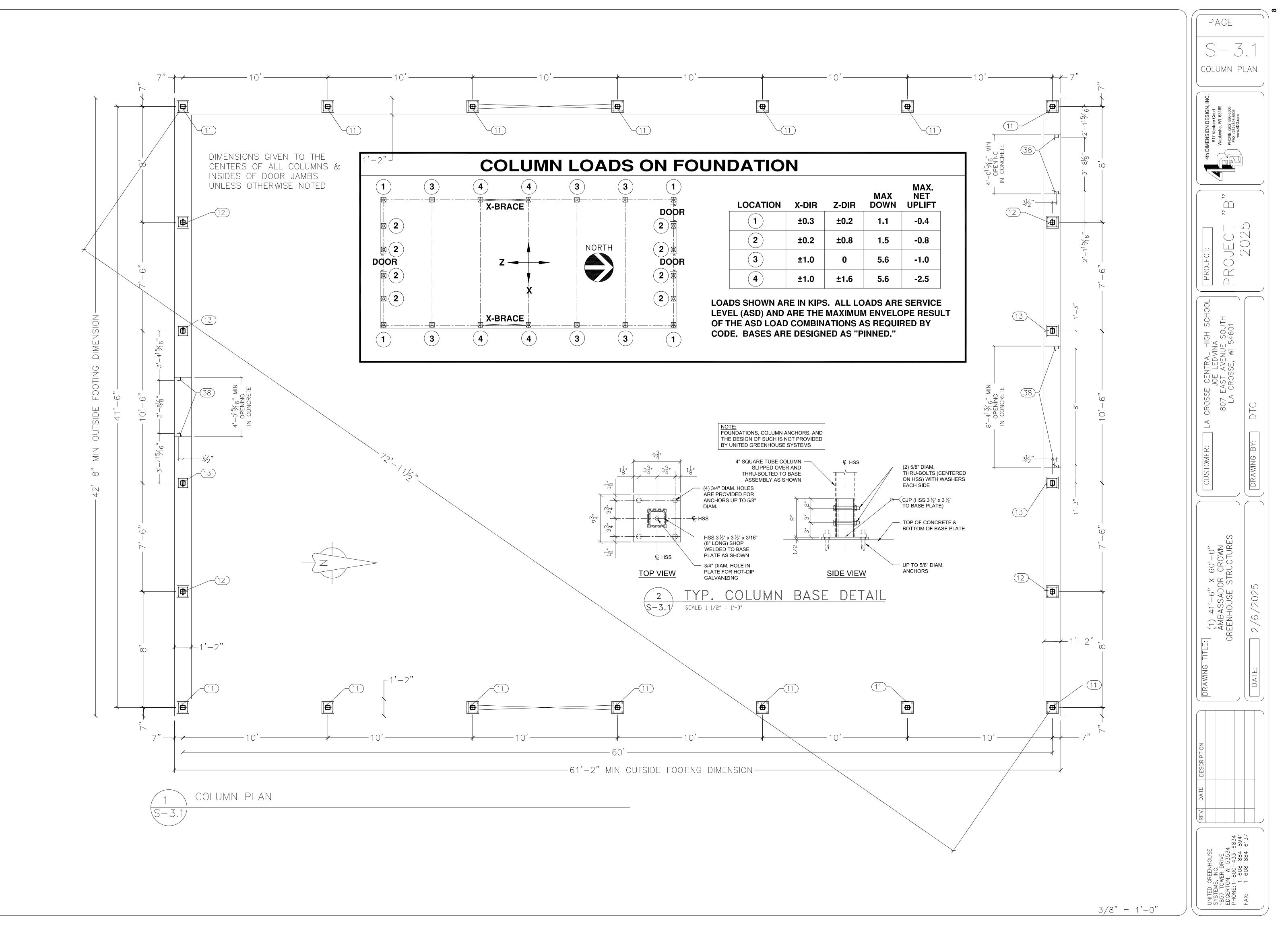

-14'-5" -

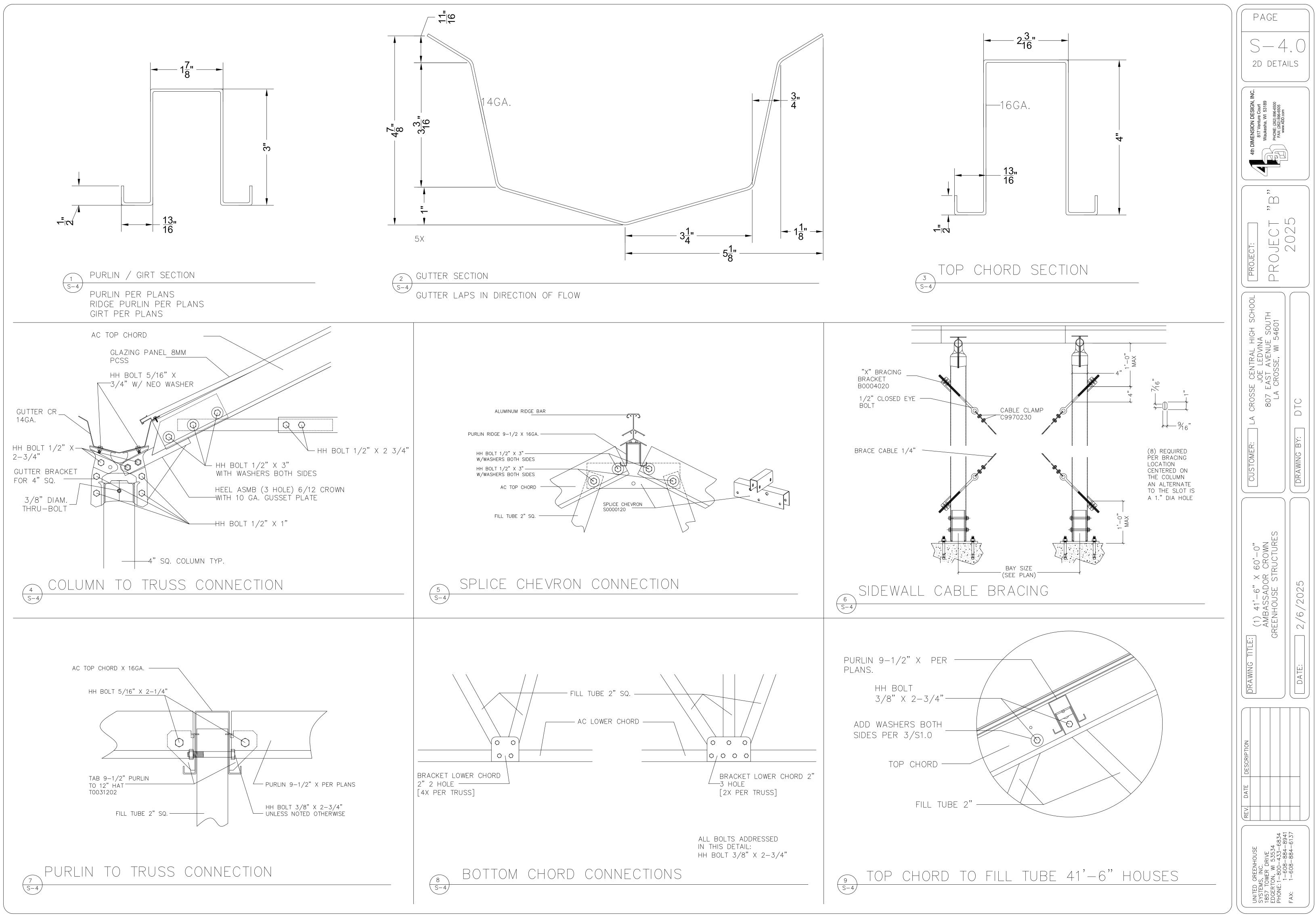

_(26)

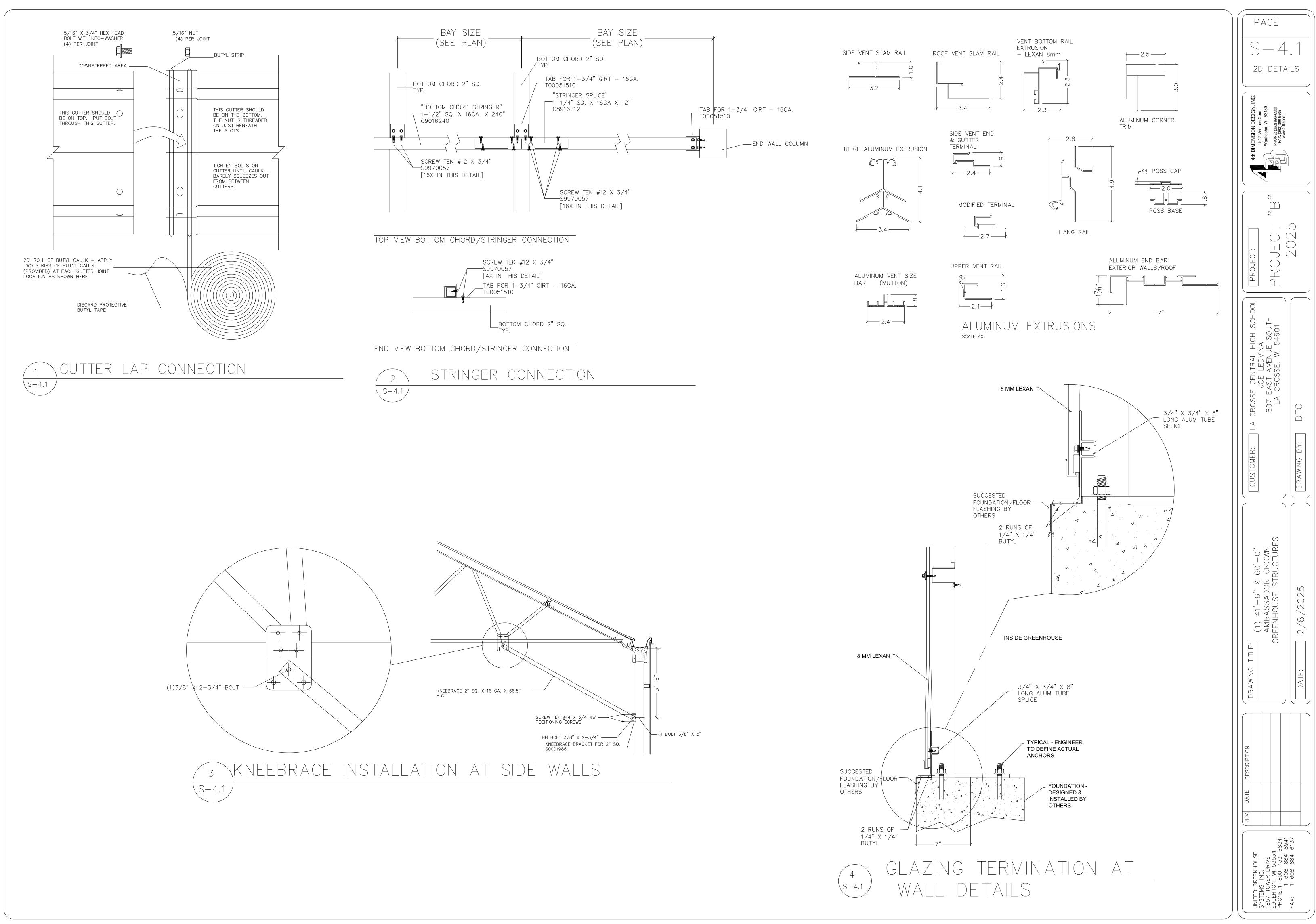


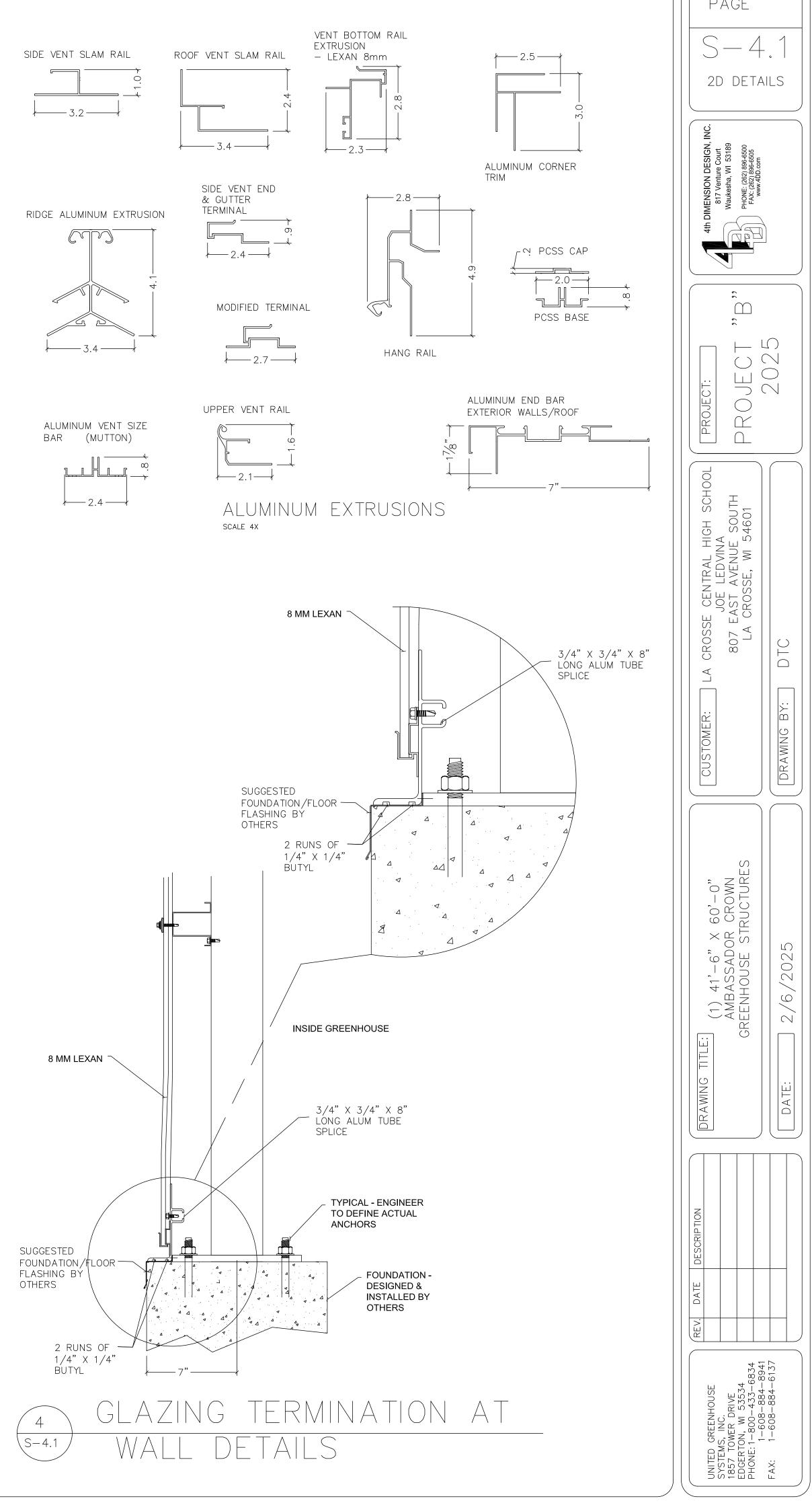
1/4" = 1'-0"

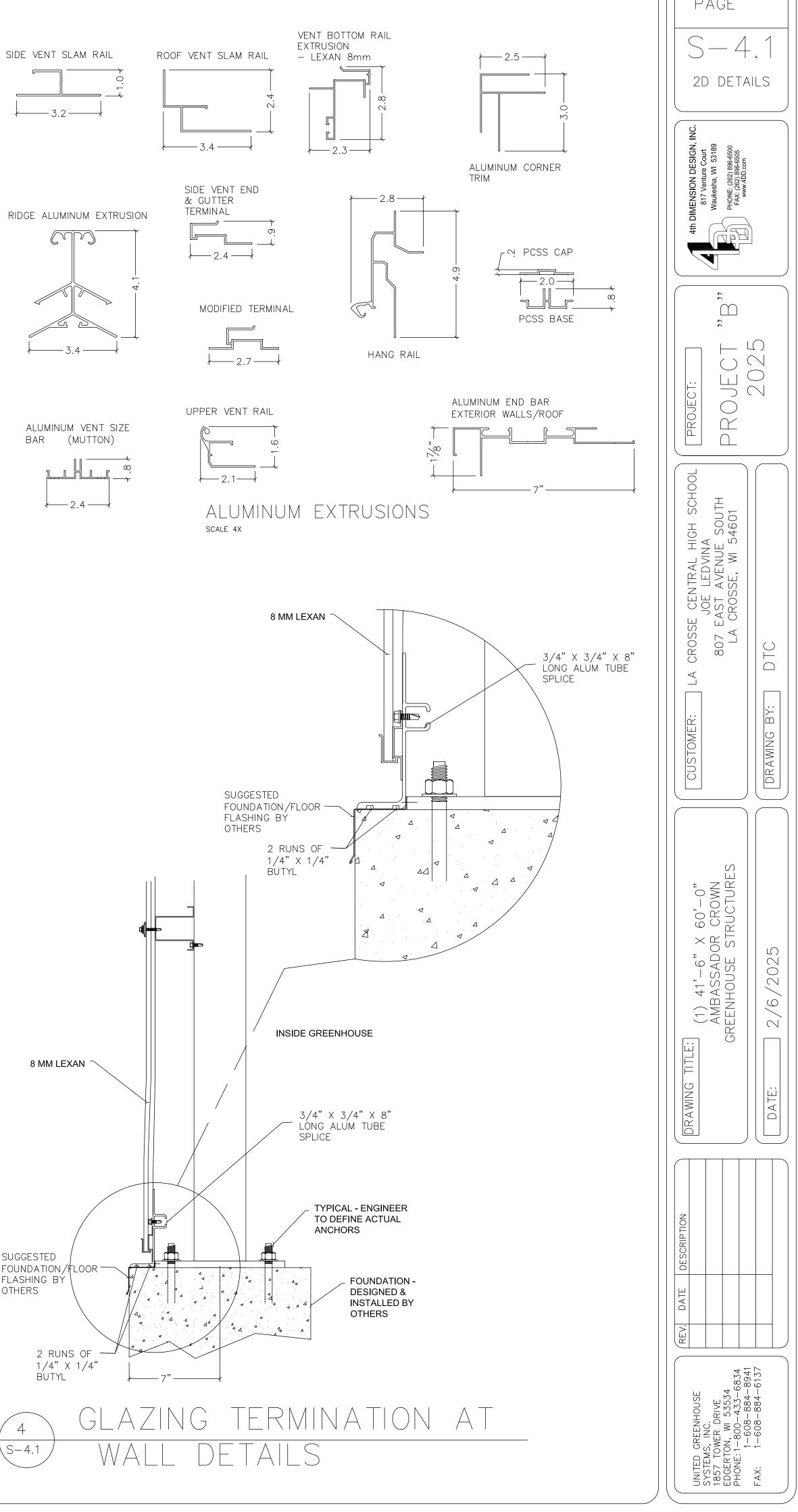


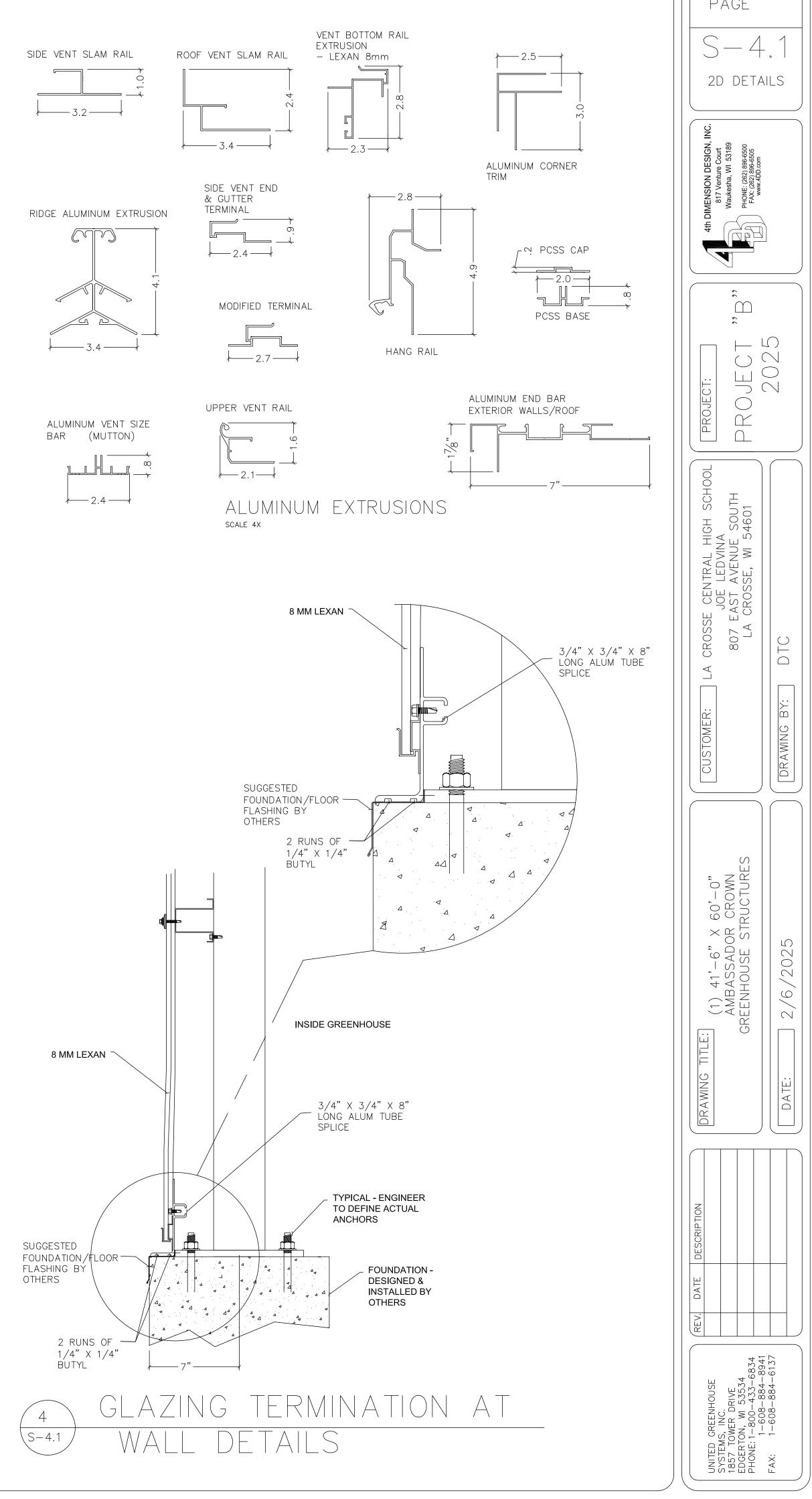


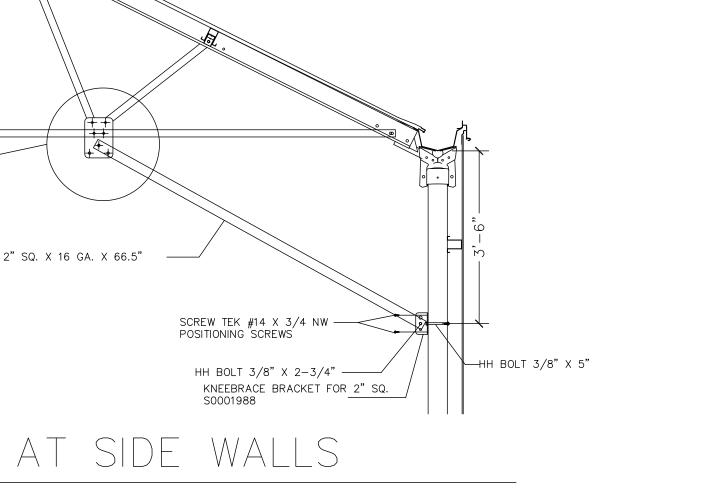


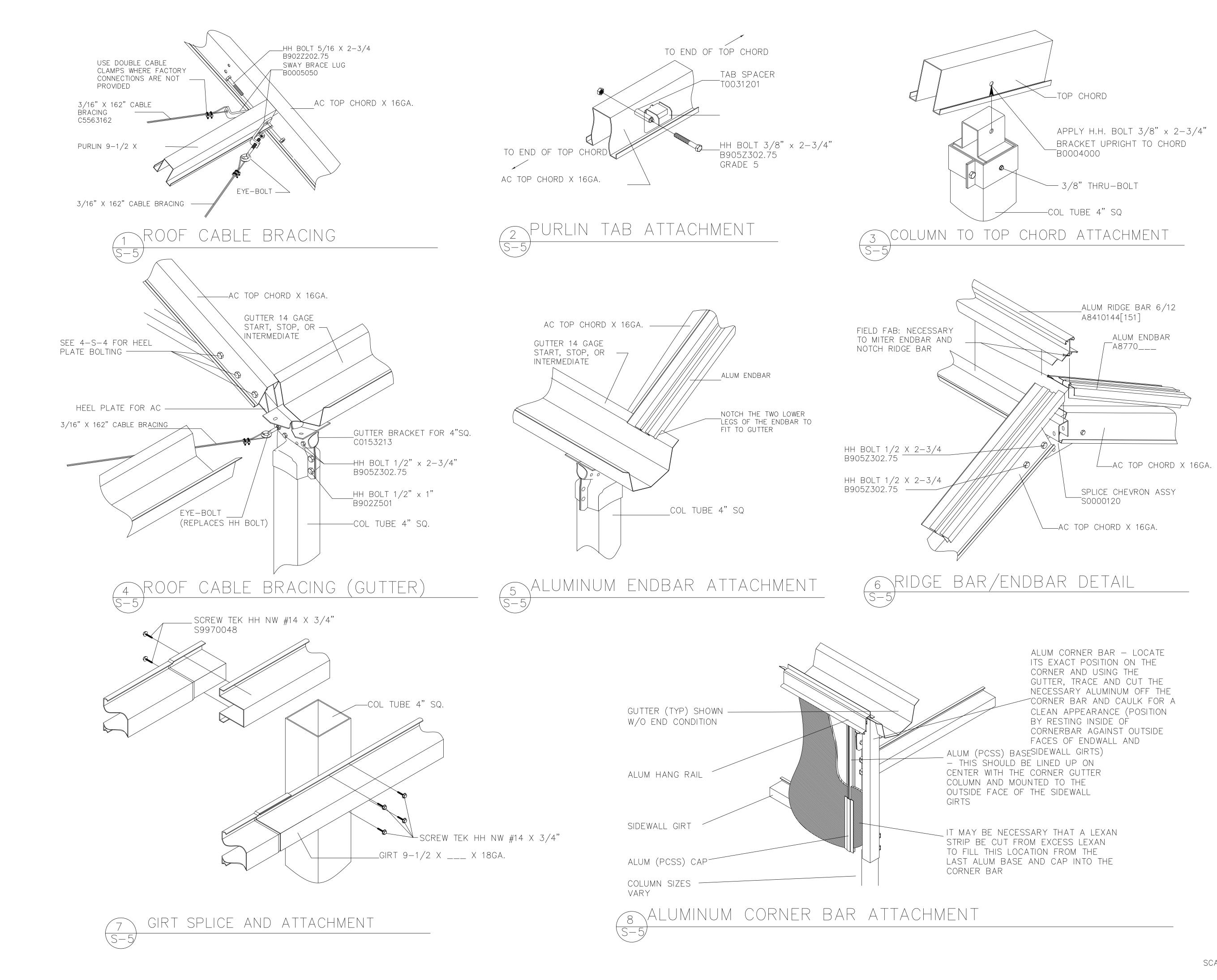

-(17)

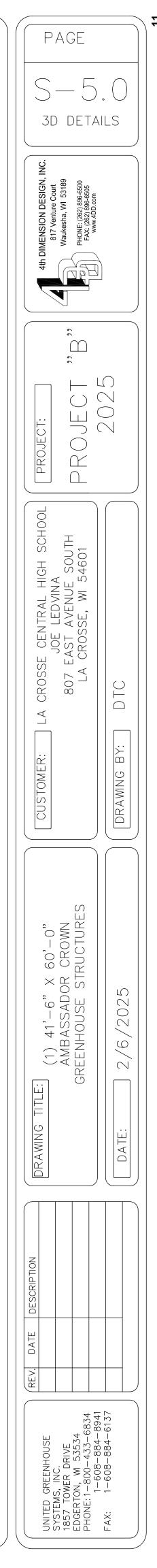


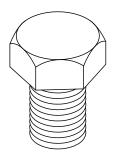

3/8" = 1'-0"

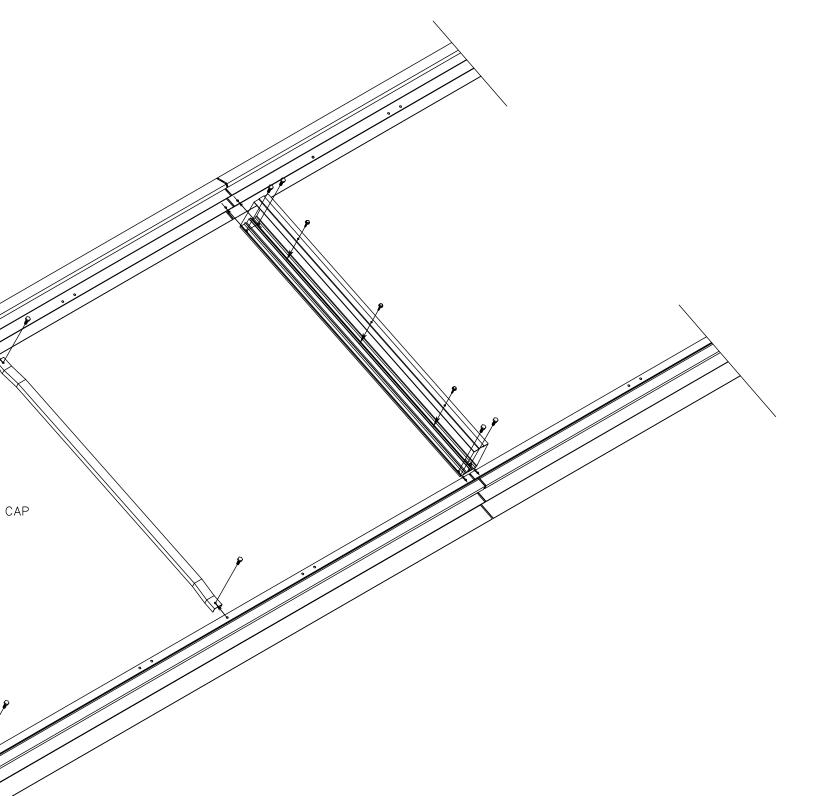




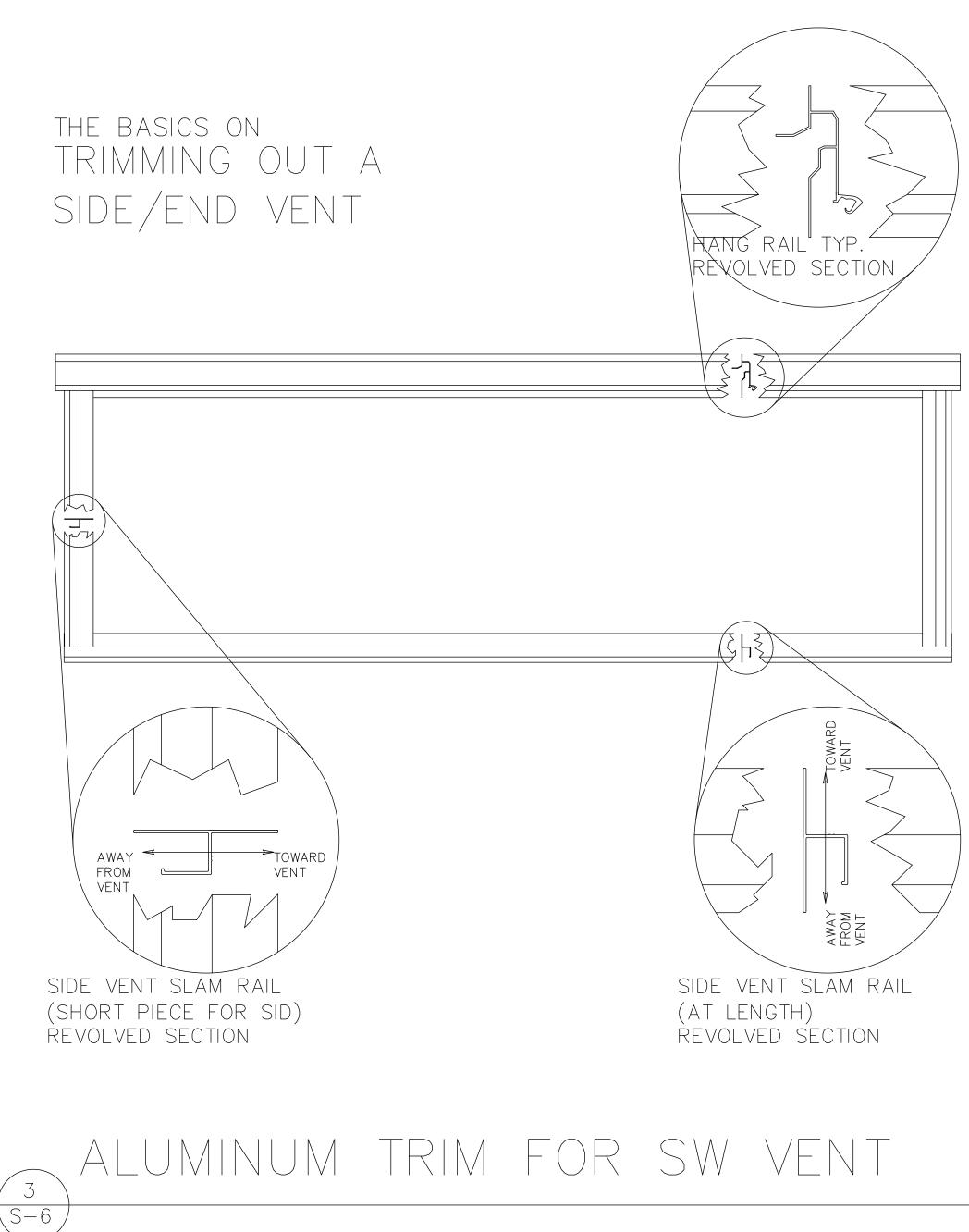


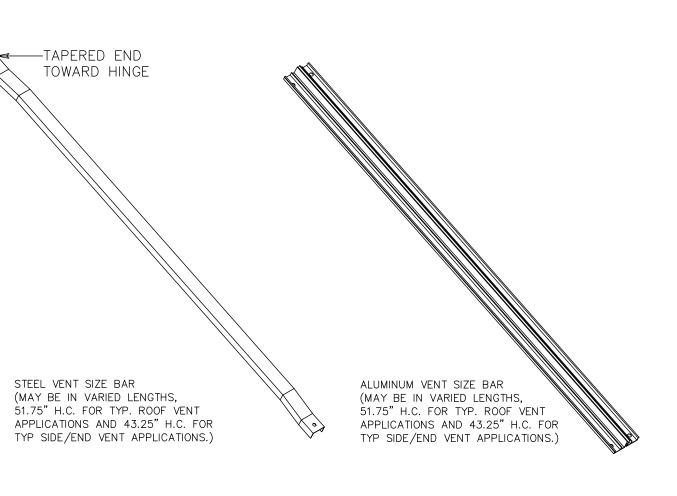




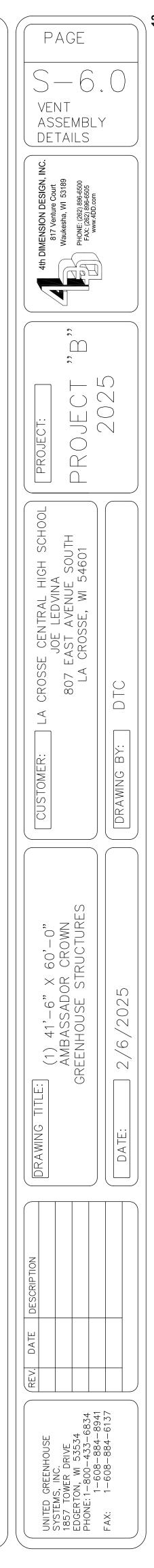

SCALE NONE

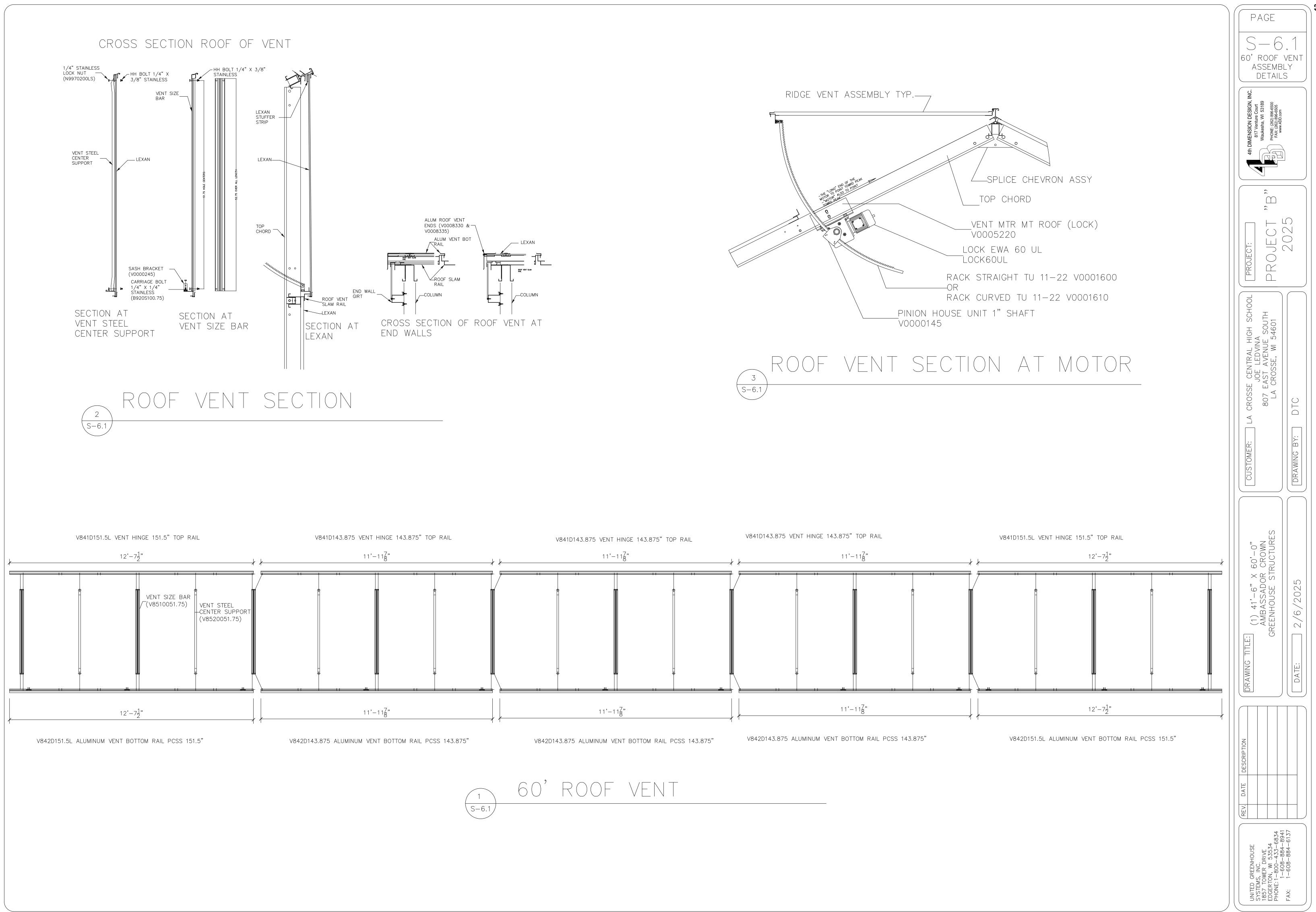
RIDGE VENTASSEMBLY ALUMINUM CAP vent size bar — SCREW ALUMINUM CAP TOOWN TO BASE VENT SIZE BAR CENTER SUPPORT ALUMINUM RIDGE BAR ASSEMBLE WITH 1/4" X 3/8"____ STAINLESS BOLTS THE TOP RAIL COULD BE LEFT LONG, BUT NOT LONGER⁻⁻ THAN THE ALUM. RIDGE ALUMINUM VENT BOTTOM RAIL ____ ALUMINUM BASE ROOF VENT END (TOP) ALUMINUM ROOF VENT END (BOTTOM) STEEL, UNEVEN LEGS – LONGER LEG TO OUTSIDE OF HOUSE (TEK SCREW TO TOP AND BOTTOM RAIL WITH 3/4" LONC SCREŴ SELF DRILLER WITH 3/4" LONG CREWS SCREW SELF DRILLER SCREW SELF DRILLER _ALUMINUM ENDBAR GREENHOUSE TOP CHORD RIDGE VENT MUST HANG OVER THE END OF THE HOUSE

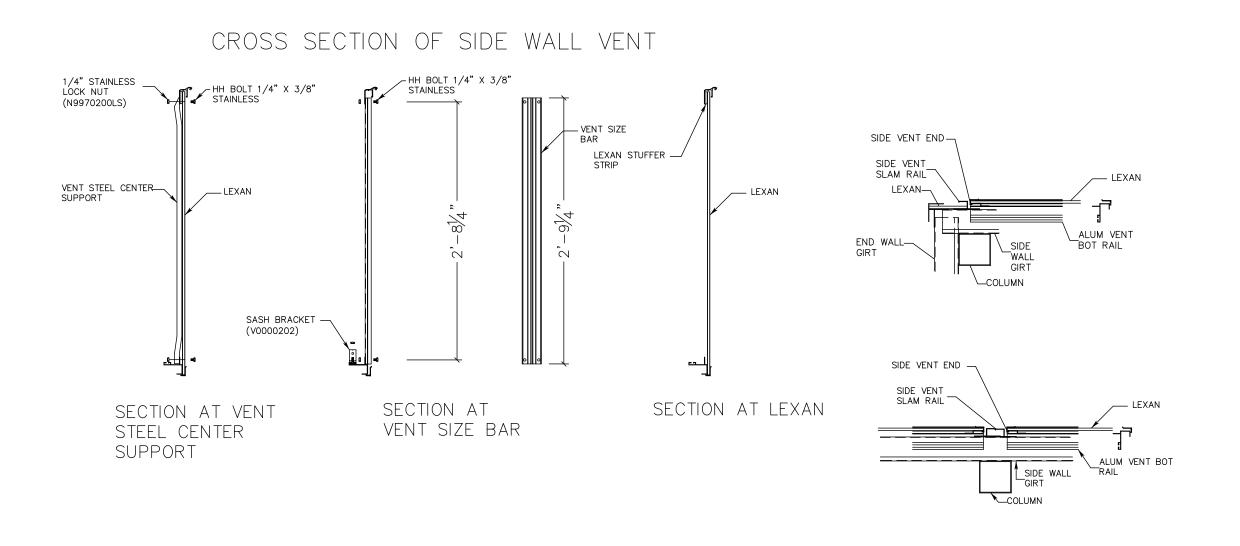

VENT FRAMEWORK ASSEMBY INSTRUCTIONS 1 5-6.1

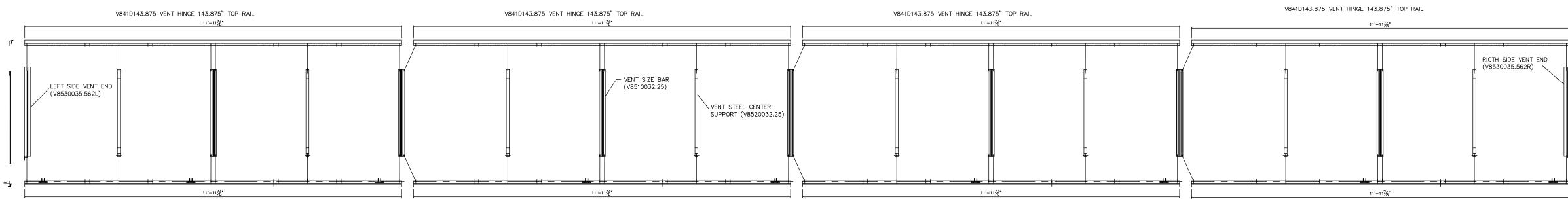


VENTS ARE ALWAYS ASSEMBLED WITH STAINLESS STEEL 1/4" X 3/8" HH BOLTS WITH 1/4" STAINLESS STEEL LOCK NUTS

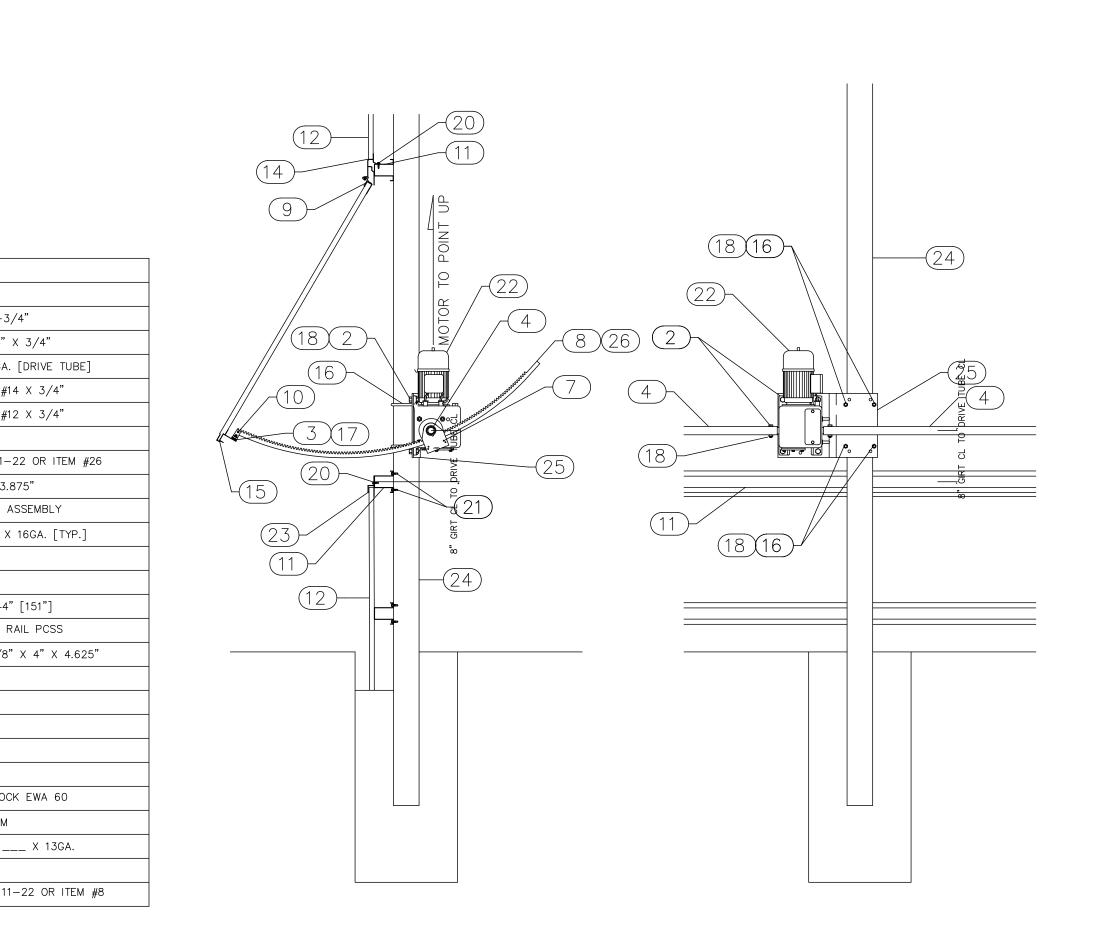





VENT SIZE BARS & CENTER SUPPTS



CROSS SECTION SIDE WALL VENT

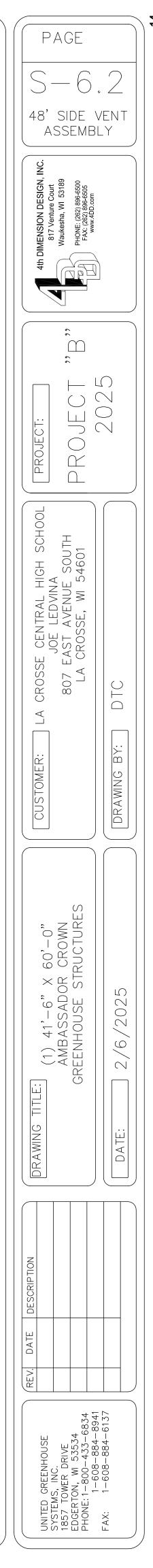


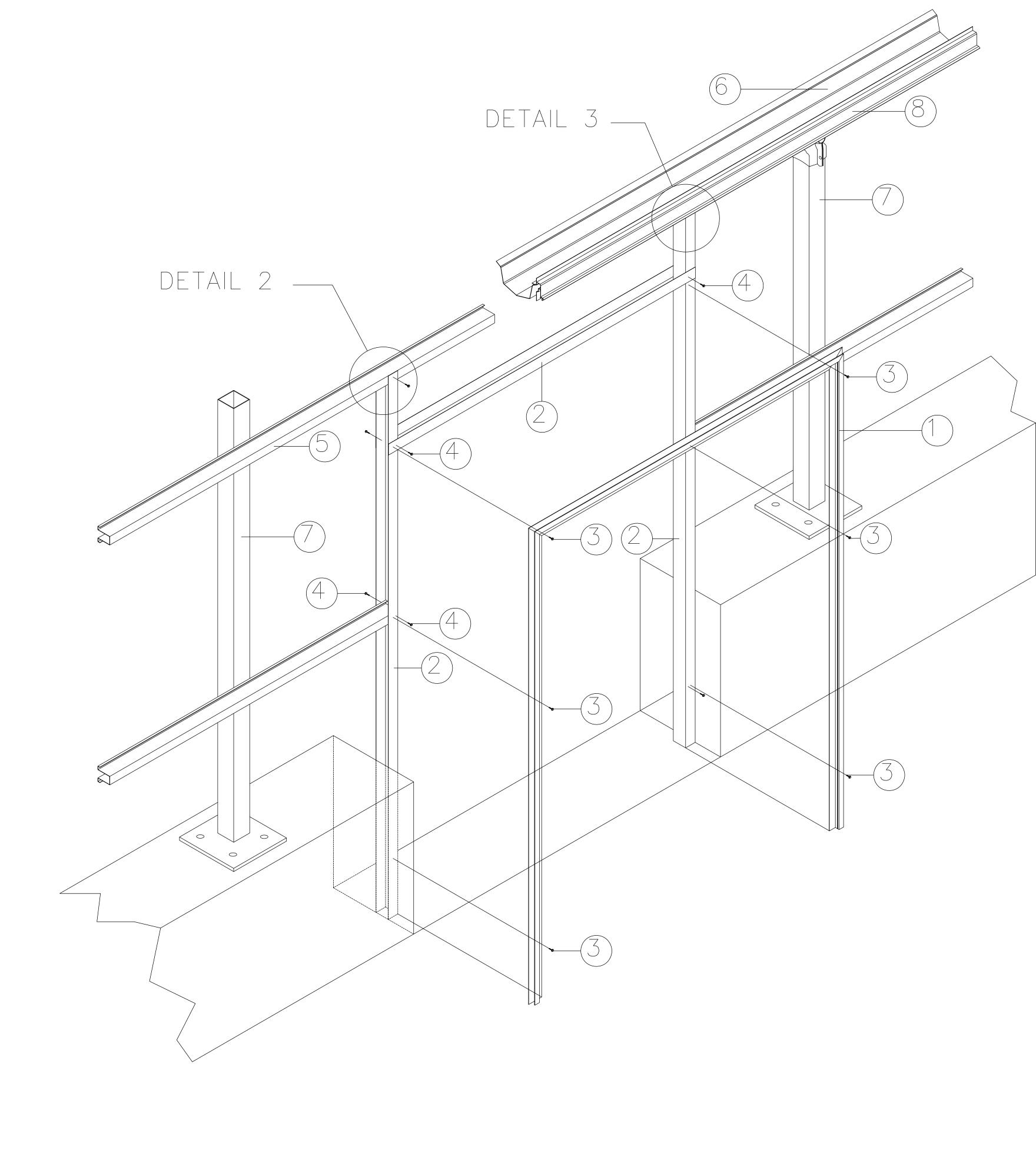
V842D143.875 ALUMINUM VENT BOTTOM RAIL PCSS 143.875"

	PART NO.	DESCRIPTION
1	NA	NA
2	B902Z301.75	HH BOLT 3/8" X 1-3/4"
3	B920S100.75	CARRAIGE BOLT 1/4" X 3/
4	C6014288	1.315 X 288" X 14GA. [DR
5	S9970048	SCREW TEK HH NW #14 X
6	S9970057	SCREW TEK HH NW #12 X
7	V0000145	PINION HOUSE UNIT
8	V0001610	RACK CURVED TU 11-22 C
9	V8410143.875	VENT TOP HINGE 143.875"
10	V0000245	WINDOW CONNECTOR ASSEM
11	G0950	GIRT 9-1/2 X X 16G
12	LEX86	LEXAN 8MM PCSS
13	GCR141	GUTTER CR 14GA.
14	A8780144[151]	ALUM HANG RAIL 144" [15
15	V8420143.875	ALUM VENT BOTTOM RAIL
16	B313Z4X4.625	SQUARE U-BOLT 3/8" X 4
17	N910S001	1/4" LOCK NUT
18	N902Z003	3/8" NUT
19	NA	NA
20	NA	NA
21	NA	NA
22	LOCK62 / LOCK60	LOCK EWA 62 OR LOCK EW
23	A8750288	SIDE/END VENT SLAM
24	C8312	COL TUBE 4" SQ X X
25	V0005230	SIDE DRIVE MT.
26	V0001600	RACK STRAIGHT TU 11-22

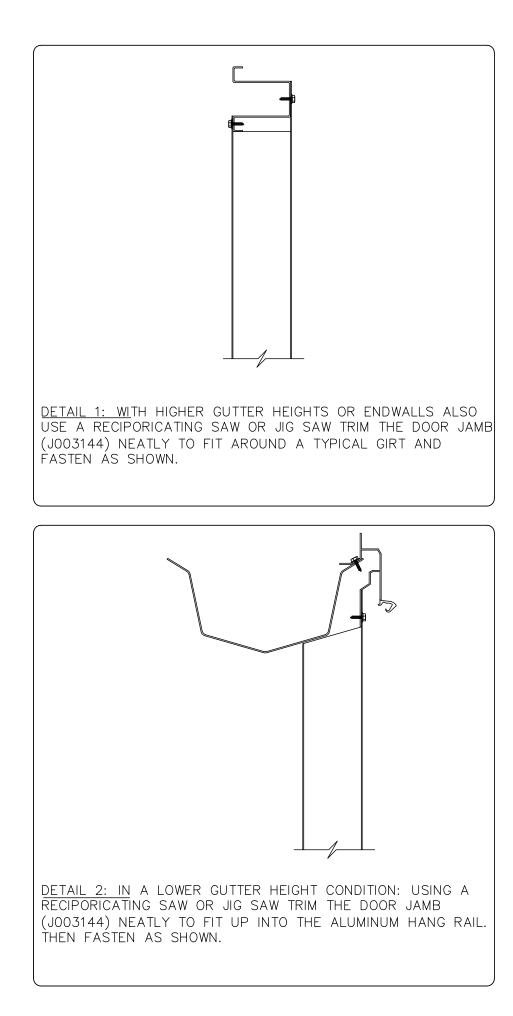
SIDE VENT SE

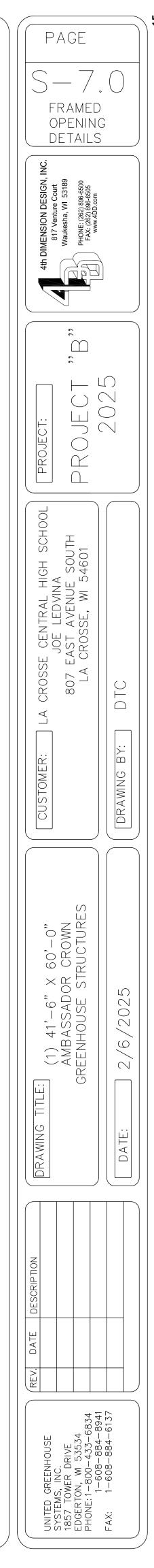
48' X 3' SIDE WALL VENT

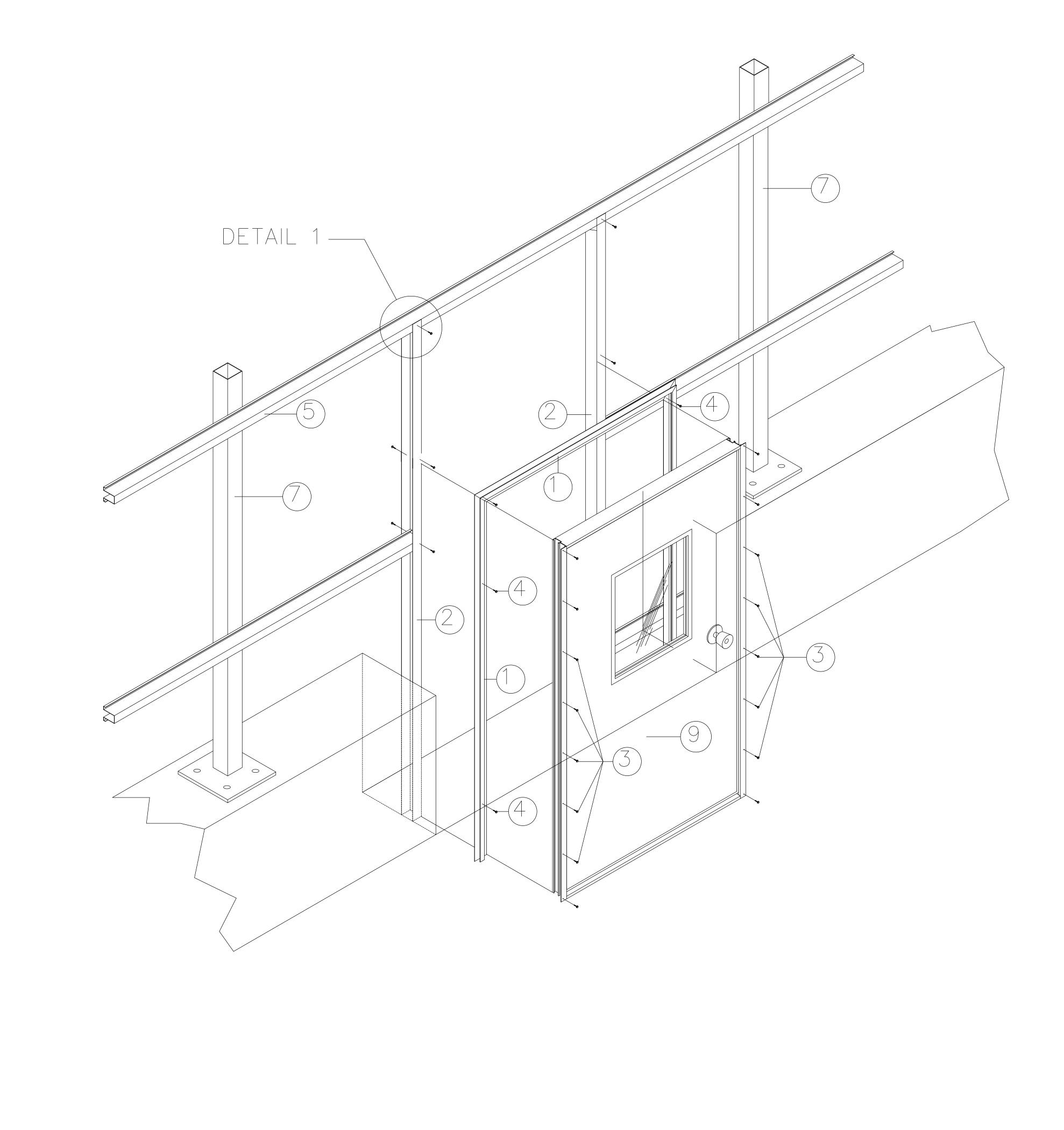

V842D143.875 ALUMINUM VENT BOTTOM RAIL PCSS 143.875"

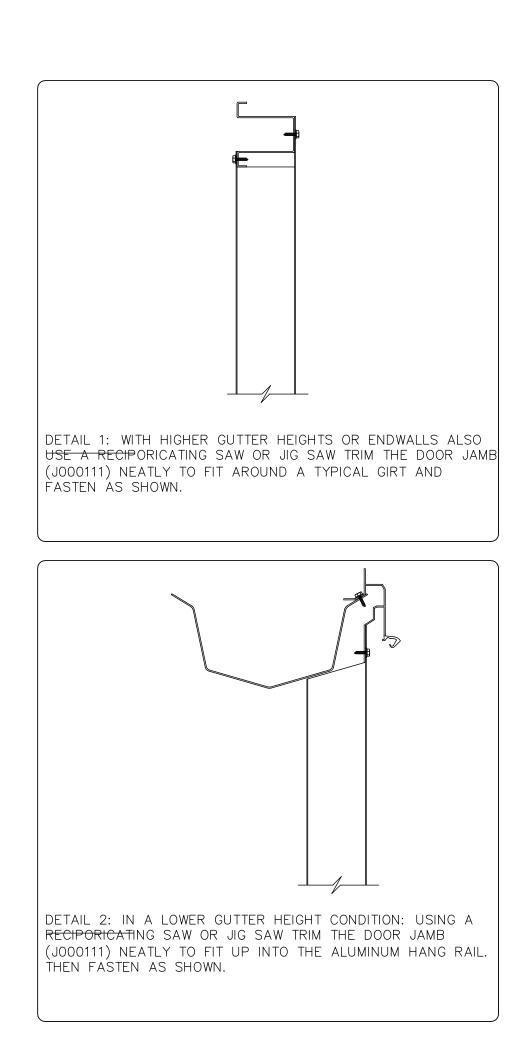

V842D143.875 ALUMINUM VENT BOTTOM RAIL PCSS 143.875"

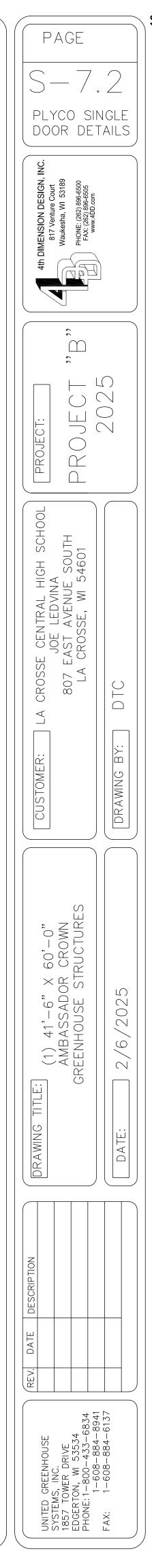
SIDE VENT SECTION AT MOTOR

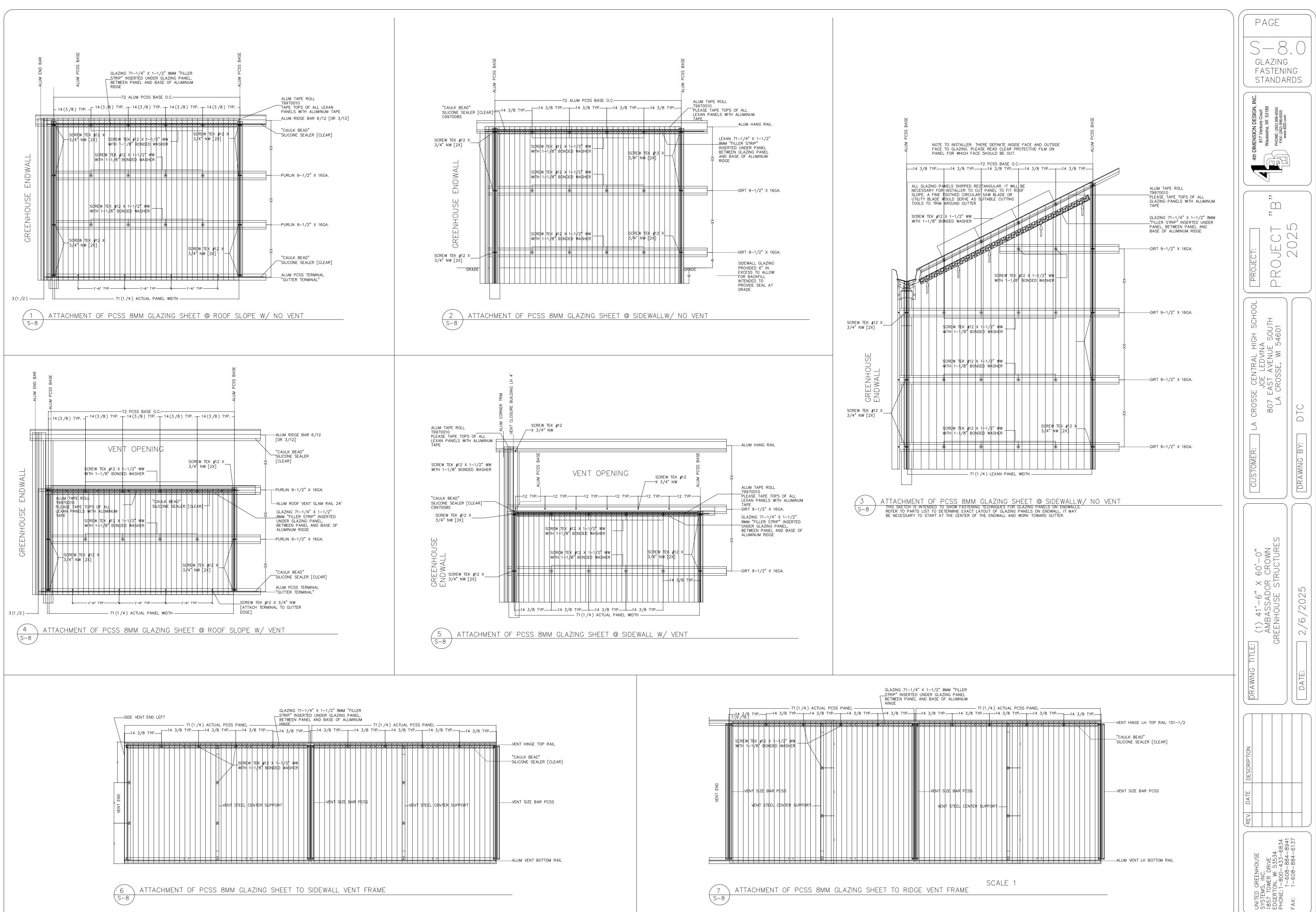

V841D143.875 VENT HINGE 143.875" TOP RAIL


V842D143.875 ALUMINUM VENT BOTTOM RAIL PCSS 143.875"

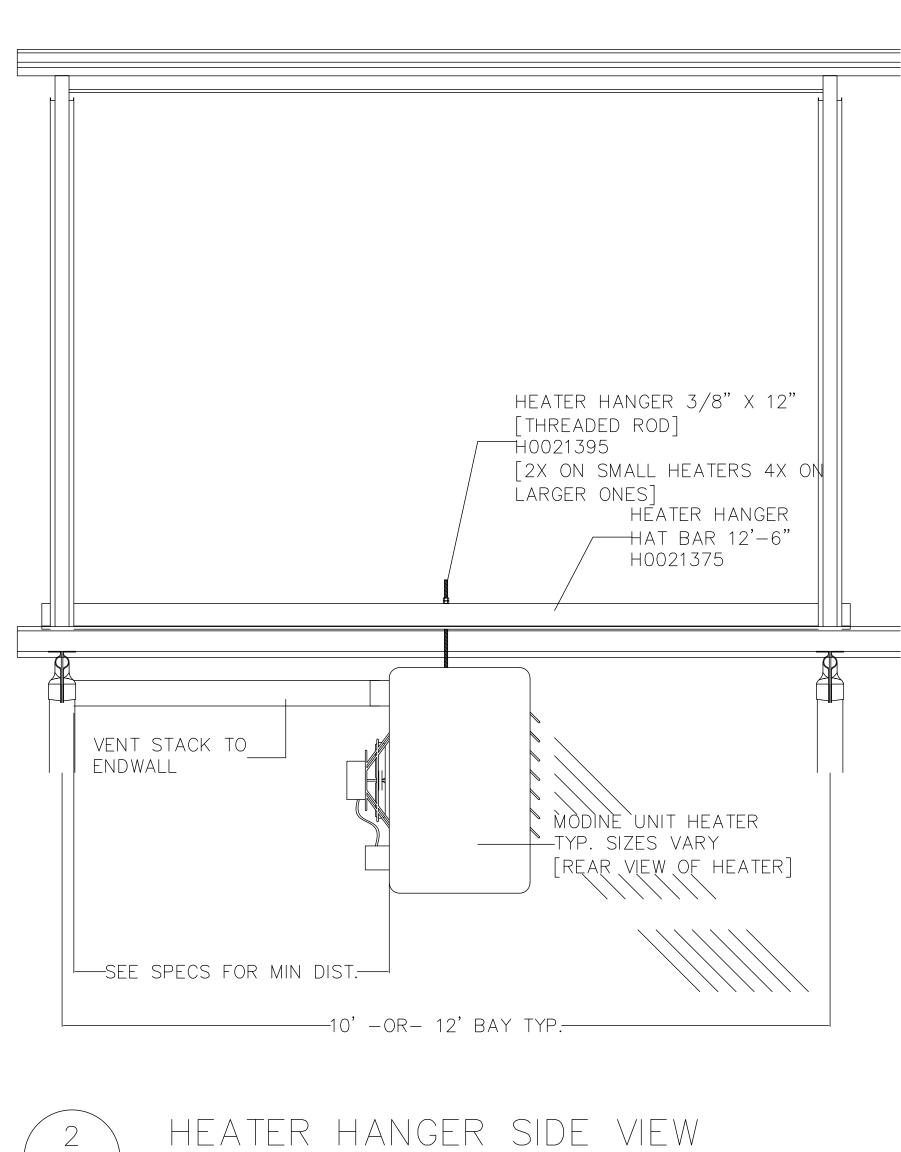


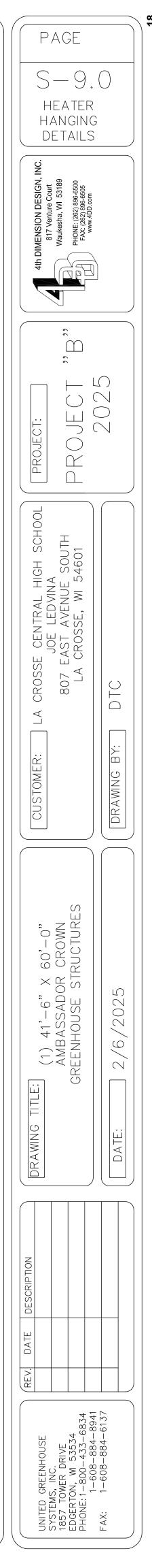

	PART DESCRIPTION	PART NUMBER
1	SIDE VENT SLAM RAIL	A8750288
2	JAMB FOR SLIDING DOOR 12'	J003144
3	TEK SCREW #10 X 3/4" NW	S9970010
4	TEK SCREW #14 X 3/4" NW	S9970048
5	TYP. GIRT (3" HAT SECTION X 16GA.)	G0950 (SIZES VARY)
6	TYP. GUTTER 14GA.	GCR141 (SIZES VARY)
7	4" SQ. COLUMN X 13GA.	C9413168 (SIZES VARY)
8	TYP. ALUMINUM HANG RAIL	A9970
9	PLYCO DOUBLE SWING DOOR	DS0

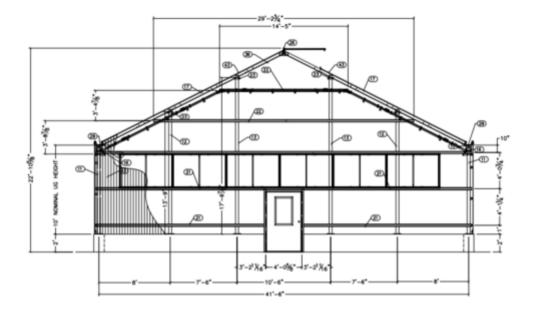







	PART DESCRIPTION	PART NUMBER
1	SIDE VENT SLAM RAIL	A8750288
2	JAMB FOR SLIDING DOOR 12'	J0030144
3	TEK SCREW #10 X 3/4" NW	S9970010
4	TEK SCREW #14 X 3/4" NW	S9970048
5	TYP. GIRT (3" HAT SECTION X 16GA.)	G0950 (SIZES VARY)
6	TYP. GUTTER 14GA.	GCR141 (SIZES VARY)
7	4" SQ. COLUMN X 13GA.	C9413168 (SIZES VARY)
8	TYP. ALUMINUM HANG RAIL	A9970
9	PLYCO DOUBLE SWING DOOR	DS0





UNITED GREENHOUSE SYSTEMS, INC. 1857 TOWER DRIVE EDGERTON, WI 53534 PHONE: (800) 433-6834 (608) 884-8941 FAX: (608) 884-6137

DESIGN LOADS FOR: Page 1 of 2 LA CROSSE CENTRAL HIGH SCHOOL GREENHOUSE

LA CROSSE, WI

GROUND SNOW LOAD OF 40 PSF, WIND EXPOSURE B, RISK CAT. II, SINGLE HOUSE

GREENHOUSE LOADING IS BASED ON THE 2018 WISCONSIN COMMERCIAL BUILDING CODE (BASED ON THE 2015 INTERNATIONAL BUILDING CODE). THE GREENHOUSE WILL BE DESIGNED USING THE LOADS AS INDICATED BELOW UNLESS OTHERWISE STATED IN THE UNITED GREENHOUSE SYSTEMS, INC. PROPOSAL, IN LOAD COMBINATIONS PER ASCE7-10. THE PURCHASER IS TO VERIFY THESE LOADS WITH THE DESIGN PROFESSIONAL OF RECORD AND THE AUTHORITY HAVING JURISDICTION FOR THE BUILDING SITE. IF THE PURCHASER OF THE GREENHOUSE HAS DOCUMENTS OR KNOWLEDGE OF LOADING REQUIREMENTS THAT VARY FROM THAT SHOWN BELOW, THIS SHEET MUST BE MARKED WITH CORRECTIONS AND RETURNED TO UNITED GREENHOUSE SYSTEMS, INC. FOR REVISION OF PROPOSAL AND ASSOCIATED COSTS.

DESIGN LOADS

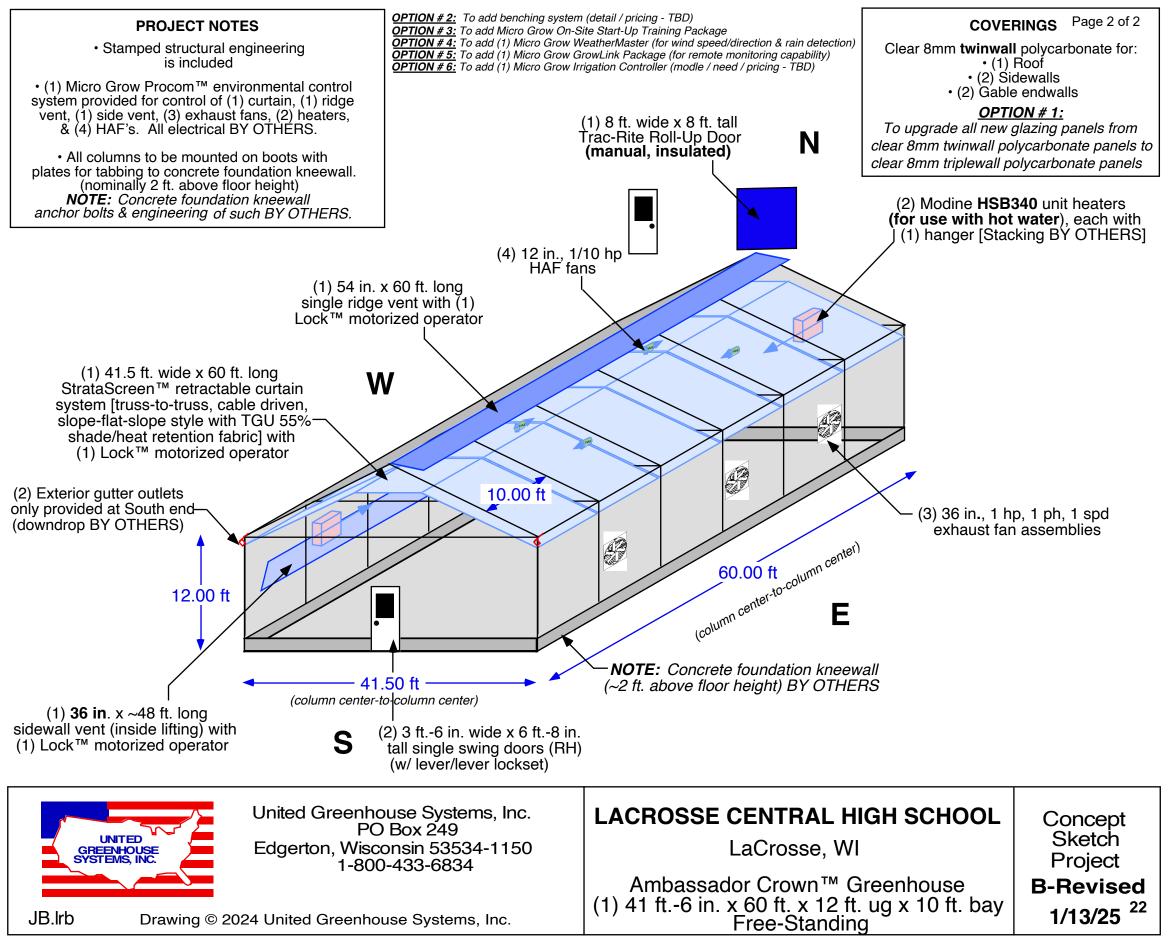
ROOF:

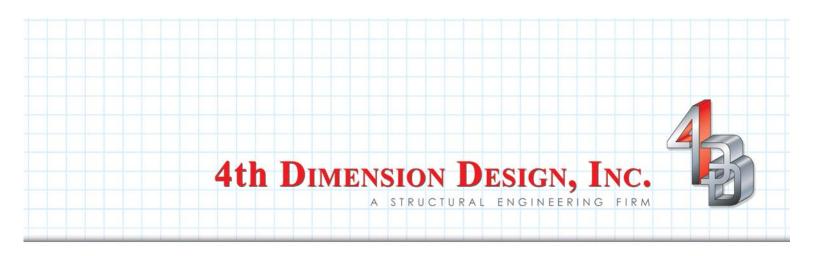
GROUND SNOW LOAD (Pg) = 40 PSF RISK CATEGORY = II SNOW IMPORTANCE FACTOR (Is) = 1.0 SNOW LOAD EXPOSURE FACTOR (Ce) = 1.0 ROOF THERMAL FACTOR (Ct) = 0.85 (CONT. HEATED PER ASCE7) ROOF SLOPE FACTOR (Cs) = 0.67 ROOF SNOW = 0.7 x (Ce) x (Ct) x (Cs) x (Is) x (Pg) = 16 PSF LIVE LOAD = 20 PSF (REDUCIBLE PER ASCE7) DEAD LOAD = GREENHOUSE SELF-WEIGHT COLLATERAL LOAD = 5 PSF - UNIFORMLY DIST. ON TRUSS BOTTOM CHORDS

WIND:

WIND SPEED = 115 MPH ULTIMATE (89.1 MPH NOMINAL) WIND EXPOSURE = B WIND RISK CATEGORY = II ENCLOSURE CLASSIFICATION = ENCLOSED COMPONENT & CLADDING DESIGN PRESSURE = PER ASCE7-10

SEISMIC:

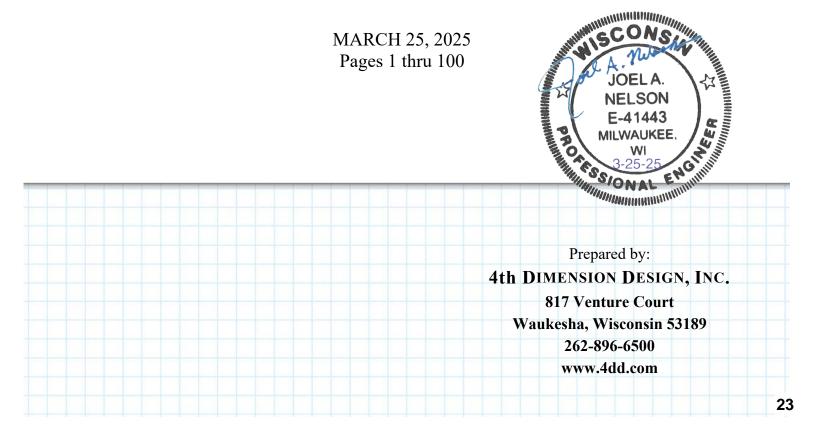

SEISMIC RISK CATEGORY (IF APPLICABLE) = II SEISMIC IMPORTANCE FACTOR (I) = 1.0 SEISMIC SITE CLASS = D (ASSUMED) SEISMIC DESIGN CATEGORY = A SPECTRA RESPONSE COEFFICIENTS PER ASCE7 FORCE RESISTING SYSTEM (MAY VARY): - ORDINARY MOMENT FRAMES OF STEEL - STEEL CONCENTRICALLY BRACED FRAMES DESIGN BASE SHEAR = BUILDING DEAD WEIGHT x 0.017


ANALYSIS PROCEDURE = EQUIVALENT LATERAL FORCE

ADDITIONAL INFO

- GREENHOUSE SIZE: 41'-6" WIDE x 60' LONG x 12' UNDER GUTTER HEIGHT
- LOADING ASSUMES THIS TO BE A SINGLE HOUSE ONLY, WITHOUT ADDITIONAL GUTTER CONNECTED HOUSES.
- ADJACENT BUILDINGS WOULD NOT REQUIRE A SNOW DRIFT LOAD TO BE APPLIED TO THE GREENHOUSE.
- BOTTOM OF TRUSS BOTTOM CHORD IS AT APPROX. 12'-0" ABOVE FINISH FLOOR.
- KNEEBRACES AT APPROX. 8'-6" (+/-1'-0") ABOVE FINISH FLOOR.
- ASSUMED BUILDING LOCATION: 1801 LOSEY BLVD S, LA CROSSE, WI 54601

CONCRETE FOUNDATION, ANCHOR BOLTS, AND ENGINEERING OF SUCH BY OTHERS. $f_c = 3000$ PSI WILL BE ASSUMED FOR BASE PLATE DESIGN AND REACTIONS WILL BE PROVIDED IN THE DESIGN CALCULATION. UNITED GREENHOUSE SYSTEMS, INC. IS A COMPONENT METAL BUILDING/GREENHOUSE MANUFACTURER AND SUPPLIER. THEIR GREENHOUSE STEEL STRUCTURAL ENGINEERING REPRESENTATIVE IS NOT TO BE CONSIDERED THE PROJECT DESIGN PROFESSIONAL OF RECORD. THE DESIGN OF ANY MATERIALS NOT DIRECTLY SUPPLIED BY UNITED GREENHOUSE SYSTEMS, INC. IS NOT PROVIDED UNDER THE SCOPE OF THIS PROPOSAL. GREENHOUSE GLAZING/COVERING IS NOT A DESIGNED ELEMENT - ANY MAINTENANCE WORK MUST BE PERFORMED IN A WAY THAT DOES NOT PUT THE LOAD OF A WORKER(S) ON THE ROOF GLAZING/COVERING. UNITED GREENHOUSE SYSTEMS, INC. TAKES NO RESPONSIBILITY FOR THE EVALUATION OF ANY EXISTING OR ADJACENT STRUCTURES WHOSE CONDITION(S) MAY BE AFFECTED IN ANY WAY BY THE PRESENCE OF THE GREENHOUSE.



DESIGN CALCULATIONS

LACROSSE CENTRAL HS GREENHOUSE LACROSSE, WI

UNITED GREENHOUSE SYSTEMS, INC.

GREENHOUSE STRUCTURAL COMPONENT DESIGN

UNITED GREENHOUSE SYSTEMS, INC. 1857 TOWER DRIVE EDGERTON, WI 53534 PHONE: (800) 433-6834 (608) 884-8941 FAX: (608) 884-6137

^{3/25/2025} DESIGN LOADS FOR: Page 1 of 100 LA CROSSE CENTRAL HIGH SCHOOL GREENHOUSE

LA CROSSE, WI

GROUND SNOW LOAD OF 40 PSF, WIND EXPOSURE B, RISK CAT. II, SINGLE HOUSE

GREENHOUSE LOADING IS BASED ON THE 2018 WISCONSIN COMMERCIAL BUILDING CODE (BASED ON THE 2015 INTERNATIONAL BUILDING CODE). THE GREENHOUSE WILL BE DESIGNED USING THE LOADS AS INDICATED BELOW UNLESS OTHERWISE STATED IN THE UNITED GREENHOUSE SYSTEMS, INC. PROPOSAL, IN LOAD COMBINATIONS PER ASCE7-10. THE PURCHASER IS TO VERIFY THESE LOADS WITH THE DESIGN PROFESSIONAL OF RECORD AND THE AUTHORITY HAVING JURISDICTION FOR THE BUILDING SITE. IF THE PURCHASER OF THE GREENHOUSE HAS DOCUMENTS OR KNOWLEDGE OF LOADING REQUIREMENTS THAT VARY FROM THAT SHOWN BELOW, THIS SHEET MUST BE MARKED WITH CORRECTIONS AND RETURNED TO UNITED GREENHOUSE SYSTEMS, INC. FOR REVISION OF PROPOSAL AND ASSOCIATED COSTS.

DESIGN LOADS

ROOF:

GROUND SNOW LOAD (Pg) = 40 PSF RISK CATEGORY = II SNOW IMPORTANCE FACTOR (Is) = 1.0 SNOW LOAD EXPOSURE FACTOR (Ce) = 1.0 ROOF THERMAL FACTOR (Ct) = 0.85 (CONT. HEATED PER ASCE7) ROOF SLOPE FACTOR (Cs) = 0.67 ROOF SNOW = 0.7 x (Ce) x (Ct) x (Cs) x (Is) x (Pg) = 16 PSF LIVE LOAD = 20 PSF (REDUCIBLE PER ASCE7) DEAD LOAD = GREENHOUSE SELF-WEIGHT COLLATERAL LOAD = 5 PSF - UNIFORMLY DIST. ON TRUSS BOTTOM CHORDS

WIND:

WIND SPEED = 115 MPH ULTIMATE (89.1 MPH NOMINAL) WIND EXPOSURE = B WIND RISK CATEGORY = II ENCLOSURE CLASSIFICATION = ENCLOSED COMPONENT & CLADDING DESIGN PRESSURE = PER ASCE7-10

SEISMIC:

SEISMIC RISK CATEGORY (IF APPLICABLE) = II SEISMIC IMPORTANCE FACTOR (I) = 1.0 SEISMIC SITE CLASS = D (ASSUMED) SEISMIC DESIGN CATEGORY = A SPECTRA RESPONSE COEFFICIENTS PER ASCE7 FORCE RESISTING SYSTEM (MAY VARY): - ORDINARY MOMENT FRAMES OF STEEL - STEEL CONCENTRICALLY BRACED FRAMES DESIGN BASE SHEAR = BUILDING DEAD WEIGHT x 0.017 ANALYSIS PROCEDURE = EQUIVALENT LATERAL FORCE

ADDITIONAL INFO

- GREENHOUSE SIZE: 41'-6" WIDE x 60' LONG x 12' UNDER GUTTER HEIGHT
- LOADING ASSUMES THIS TO BE A SINGLE HOUSE ONLY, WITHOUT ADDITIONAL GUTTER CONNECTED HOUSES.
- ADJACENT BUILDINGS WOULD NOT REQUIRE A SNOW DRIFT LOAD TO BE APPLIED TO THE GREENHOUSE.
- BOTTOM OF TRUSS BOTTOM CHORD IS AT APPROX. 12'-0" ABOVE FINISH FLOOR.
- KNEEBRACES AT APPROX. 8'-6" (+/-1'-0") ABOVE FINISH FLOOR.
- ASSUMED BUILDING LOCATION: 1801 LOSEY BLVD S, LA CROSSE, WI 54601

CONCRETE FOUNDATION, ANCHOR BOLTS, AND ENGINEERING OF SUCH BY OTHERS. $f_c = 3000$ PSI WILL BE ASSUMED FOR BASE PLATE DESIGN AND REACTIONS WILL BE PROVIDED IN THE DESIGN CALCULATION. UNITED GREENHOUSE SYSTEMS, INC. IS A COMPONENT METAL BUILDING/GREENHOUSE MANUFACTURER AND SUPPLIER. THEIR GREENHOUSE STEEL STRUCTURAL ENGINEERING REPRESENTATIVE IS NOT TO BE CONSIDERED THE PROJECT DESIGN PROFESSIONAL OF RECORD. THE DESIGN OF ANY MATERIALS NOT DIRECTLY SUPPLIED BY UNITED GREENHOUSE SYSTEMS, INC. IS NOT PROVIDED UNDER THE SCOPE OF THIS PROPOSAL. GREENHOUSE GLAZING/COVERING IS NOT A DESIGNED ELEMENT - ANY MAINTENANCE WORK MUST BE PERFORMED IN A WAY THAT DOES NOT PUT THE LOAD OF A WORKER(S) ON THE ROOF GLAZING/COVERING. UNITED GREENHOUSE SYSTEMS, INC. TAKES NO RESPONSIBILITY FOR THE EVALUATION OF ANY EXISTING OR ADJACENT STRUCTURES WHOSE CONDITION(S) MAY BE AFFECTED IN ANY WAY BY THE PRESENCE OF THE GREENHOUSE. **4th Dimension Design, Inc.** 817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com

JOB NO. 14677	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

www.struware.com

Code Search

Code: International Building Code 2015

Occupancy:

Occupancy Group = U Utility & Miscellaneous

Risk Category & Importance Factors:

Risk Category =	II
Wind factor =	1.00
Snow factor =	1.00
Seismic factor =	1.00

Type of Construction:

Fire Rating:

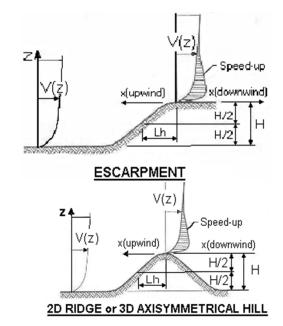
Roof =	0.0 hr
Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	6.00 / 12	26.6 deg
Building length (L)	60.0 ft	
Least width (B)	41.5 ft	
Mean Roof Ht (h)	17.2 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf:	18 psf
	200 to 600 sf:	21.6 - 0.018Area, but not less than 12 psf
	over 600 sf:	12 psf


Floor:		
Typical Floor		N/A
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

4th Dimension Design, Inc.

817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com

JOB NO.	14677	SHEET NO.
CALCULATED BY		DATE
CHECKED BY		DATE

E 7- 10
115 mph 9.1 mph II B sed Building +/-0.18 0.85 0.701 0.598 Gable
Flat 80.0 ft 100.0 ft 0.80 0.50 160.0 ft 50.0 ft ownwind
$K_1 = 0.000$ $K_2 = 0.792$ $K_3 = 1.000$ $K_2 = 1.00$

Gust Effect	Factor
h =	17.2 ft
B =	41.5 ft
/z (0.6h) =	30.0 ft

Flexible structure if r	natural frequency	v < 1 Hz (T > 1 second).	
However, if building	h/B < 4 then prot	bably rigid structure (rule of thu	mb).
h/E	3 = 0.41	Rigid structure	

G = 0.85 Using rigid structure default

Rigio	Structure	Flexible or Dyn	amically Se	nsitive St	ructure		
ē =	0.33	Natural Frequency $(\eta_1) =$	0.0 Hz				
{ = z _{min} =	320 ft 30 ft	Damping ratio (β) = /b =	0 0.45				
c = g _Q , g _v =	0.30 3.4	/α = Vz =	0.25 74.1				
$L_z =$	310.0 ft	N ₁ =	0.00				
Q =	0.91	R _n =	0.000				
$I_z =$	0.30	R _h =	28.282	η =	0.000	h =	17.2 ft
G =	0.87 use G = 0.85	R _B =	28.282	η =	0.000		
		R _L =	28.282	η =	0.000		
		g _R =	0.000				
		R =	0.000				
		G =	0.000				

4th Dimension Design, Inc. 817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com

JOB NO. 14	4677 SHEET N	10.
CALCULATED BY	DA	TE
CHECKED BY	DA	

Wind Loads - MWFRS h≤60' (Low-rise Buildings) Enclosed/partially enclosed only

Kz = Kh (case 1) =	0.70
Base pressure (qh) =	20.2 psf
GCpi =	+/-0.18

Edge Strip (a) =	4.2 ft
End Zone (2a) =	8.3 ft
Zone 2 length =	20.8 ft

Wind Pressure Coefficients

	C	ASE A			CASE B	
		θ = 26.6 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.55	0.73	0.37	-0.45	-0.27	-0.63
2	-0.10	0.08	-0.28	-0.69	-0.51	-0.87
3	-0.45	-0.27	-0.63	-0.37	-0.19	-0.55
4	-0.39	-0.21	-0.57	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.73	0.91	0.55	-0.48	-0.30	-0.66
2E	-0.19	-0.01	-0.37	-1.07	-0.89	-1.25
3E	-0.58	-0.40	-0.76	-0.53	-0.35	-0.71
4E	-0.53	-0.35	-0.71	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Ultimate Wind Surface Pressures (psf)

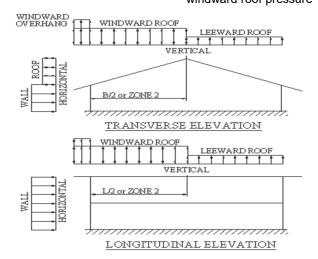
-			
1	14.7 7.5	-5.4	-12.7
2	1.6 -5.6	-10.3	-17.5
3	-5.4 -12.6	-3.8	-11.1
4	-4.2 -11.5	-5.4	-12.7
5		11.7	4.4
6		-2.2	-9.5
1E	18.3 11.0	-6.0	-13.3
2E	-0.2 -7.5	-17.9	-25.2
3E	-8.2 -15.4	-7.1	-14.3
4E	-7.2 -14.4	-6.0	-13.3
5E		15.9	8.7
6E		-5.0	-12.3

Parapet

Windward parapet = Leeward parapet = 0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0)

Windward roof overhangs =

14.1 psf (upward) add to windward roof pressure


Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)					
Interior Zone:	Wall	19.0 psf			
	Roof	7.0 psf			
End Zone:	Wall	25.5 psf			
	Roof	8.0 psf			

Longitudinal direction (parallel to L)

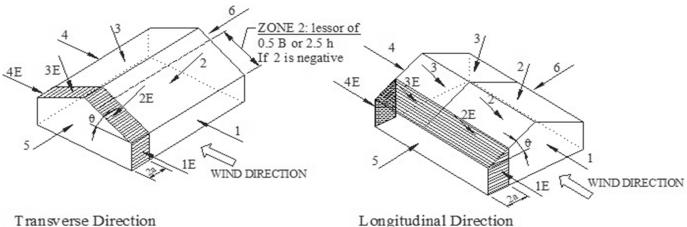
Interior Zone:	Wall	13.9 psf
End Zone:	Wall	21.0 psf

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.



3/25/2025

4th Dimension Design, Inc. 817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com


JOB NO . 14677	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Location of MWFRS Wind Pressure Zones

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.

ASCE 7 -99 and ASCE 7-10 (& later)

Longitudinal Direction

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram.

ASCE 7 -02 and ASCE 7-05

Page 6 of 100 JOB TITLE LA CROSSE CENTRAL HIGH SCHOOL

4th Dimension Design, Inc. 817 Venture Ct

Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com

SHEET NO.
DATE
DATE

Ultimate Wind Pressures

Wind Loads - Components & Cladding : h <= 60'

Kh (case 1) =	0.70	h =	17.2 ft
Base pressure (qh) =	20.2 psf	a =	4.2 ft
Minimum parapet ht =	0.0 ft	GCpi =	+/-0.18
Roof Angle (θ) =	26.6 deg		
Type of roof = 0			

R

Roof_	GCp +/- GCpi			Surfac	e Pressure	User input		
Area	10 sf	50 sf	100 sf	10 sf	50 sf	100 sf	30 sf	40 sf
Negative Zone 1	-1.08	-1.01	-0.98	-21.8	-20.4	-19.8	-20.8	-20.6
Negative Zone 2	-1.88	-1.53	-1.38	-37.9	-30.9	-27.8	-33.1	-31.8
Negative Zone 3	-2.78	-2.36	-2.18	-56.0	-47.6	-44.0	-50.3	-48.8
Positive All Zones	0.68	0.54	0.48	16.0	16.0	16.0	16.0	16.0
Overhang Zone 2	-2.20	-2.20	-2.20	-44.4	-44.4	-44.4	-44.4	-44.4
Overhang Zone 3	-3.70	-2.86	-2.50	-74.6	-57.7	-50.4	-63.1	-60.0

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 3.6 psf)

Parapet					
qp = 0.0 psf		Surfa	ce Pressure	e (psf)	User input
	Solid Parapet Pressure	10 sf	100 sf	500 sf	20 sf
CASE A = pressure towards building (pos)	CASE A : Interior zone:	0.0	0.0	0.0	0.0
CASE B = pressure away from bldg (neg)	Corner zone:	0.0	0.0	0.0	0.0
	CASE B : Interior zone:	0.0	0.0	0.0	0.0
	Corner zone:	0.0	0.0	0.0	0.0

Walls	(GCp +/- GCp	bi	Surfa	ce Pressure	(psf)	User	input
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	30 sf	50 sf
Negative Zone 4	-1.28	-1.10	-0.98	-25.8	-22.2	-19.8	-24.1	-23.3
Negative Zone 5	-1.58	-1.23	-0.98	-31.9	-24.7	-19.8	-28.5	-26.9
Positive Zone 4 & 5	1.18	1.00	0.88	23.8	20.2	17.7	22.1	21.3

3/25/2025

4th Dimension Design, Inc. 817 Venture Ct Waukesha, WI 53189 262.896.6500

andrea.kohl@4dd.com

JOB NO. 14677 SHEET NO. CALCULATED BY DATE CHECKED BY DATE

Ultimate Wind Pressures

Location of C&C Wind Pressure Zones

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'

Address: 1801 Losey Blvd S La Crosse, Wisconsin 54601

ASCE Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Latitude: 43.793385 Longitude: -91.218917 Elevation: 664.9313411071986 ft (NAVD 88)

Wind

Results:

Wind Speed	115 Vmph
10-year MRI	76 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	96 Vmph

Data Source: Date Accessed: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2,

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2.

4th Dimension Design, Inc.

817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com

3/25/202	25

JOB NO.	14677	SHEET NO.	
CALCULATED BY		DATE	
CHECKED BY		DATE	

Snow Loads : ASCE 7-10

Roof slop Horiz. eave to ridge dis Roof length parallel to ridg	st (W)) =	26.6 deg 20.8 ft 60.0 ft	
Type of Roof Ground Snow Load Risk Category Importance Factor Thermal Factor Exposure Factor	Pg I Ct Ce	= = =	40.0 psf II 1.0	w/ trussed systems
Pf = 0.7*Ce*Ct*I*Pg Unobstructed Slippery Surface	9	=	23.8 psf yes	
Sloped-roof Factor Balanced Snow Load	Cs Ps		0.67 16.0 psf	use 0.67
Rain on Snow Surcharge Angl Code Maximum Rain Surcharg Rain on Snow Surcharge Ps plus rain surcharge Minimum Snow Load		=	0.42 deg 5.0 psf 0.0 psf 16.0 psf 0.0 psf	
Uniform Roof Design Snow L	.oad	=	16.0 psf	

Unbalanced Snow Loads - for Hip & Gable roofs only

Required if slope is between 7 on 12 =	30.26 deg
and 2.38 deg =	2.38 deg Unbalanced snow loads must be applied
Windward snow load =	4.8 psf = 0.3Ps
Leeward snow load from ridge to 6.19' =	38.3 psf = hdγ / √S + Ps
Leeward snow load from 6.19' to the eave =	16.0 psf = Ps

Windward Snow Drifts 1 - Against walls, parapets, etc

Upwind fetch	lu =	0.0 ft
Projection height	h =	0.0 ft
Snow density	g =	19.2 pcf
Balanced snow height	hb =	0.83 ft
	hd =	1.20 ft
	hc =	-0.83 ft
hc/hb <0.2 = -1.0	lu<15', drift	not req'd
Drift height (hc)	=	0.00 ft
Drift width	w =	-6.96 ft
Surcharge load:	pd = γ*hd =	0.0 psf
Balanced Snow load:	=	16.0 psf
		16.0 psf
Windward Snow Drifts 2 - Aga	<u>iinst walls, pa</u>	rapets, etc
Upwind fetch	lu =	0.0 ft
Projection height	h =	0.0 ft
Snow density	g =	19.2 pcf
Balanced snow height	hb =	0.83 ft
	hd =	1.20 ft
	hc =	-0.83 ft
hc/hb <0.2 = -1.0	lu<15', drift	not req'd
Drift height (hc)	=	0.00 ft
Drift width	w =	-6.96 ft
Surcharge load:	pd = γ*hd =	0.0 psf
Balanced Snow load:	=	16.0 psf
	-	16.0 psf

NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the

design roof snow load so as to produce the greatest possible effect - see code.

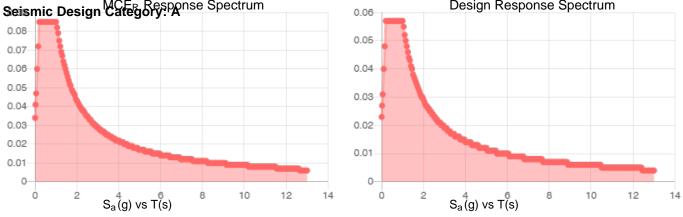
Results:

Ground Snow Load, p _g : Mapped Elevation:	40 lb/ft ² 664.9 ft
Data Source:	ASCE/SEI 7-10, Fig. 7-1.
Date Accessed:	Mon Feb 17 2025
	Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered.
	Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

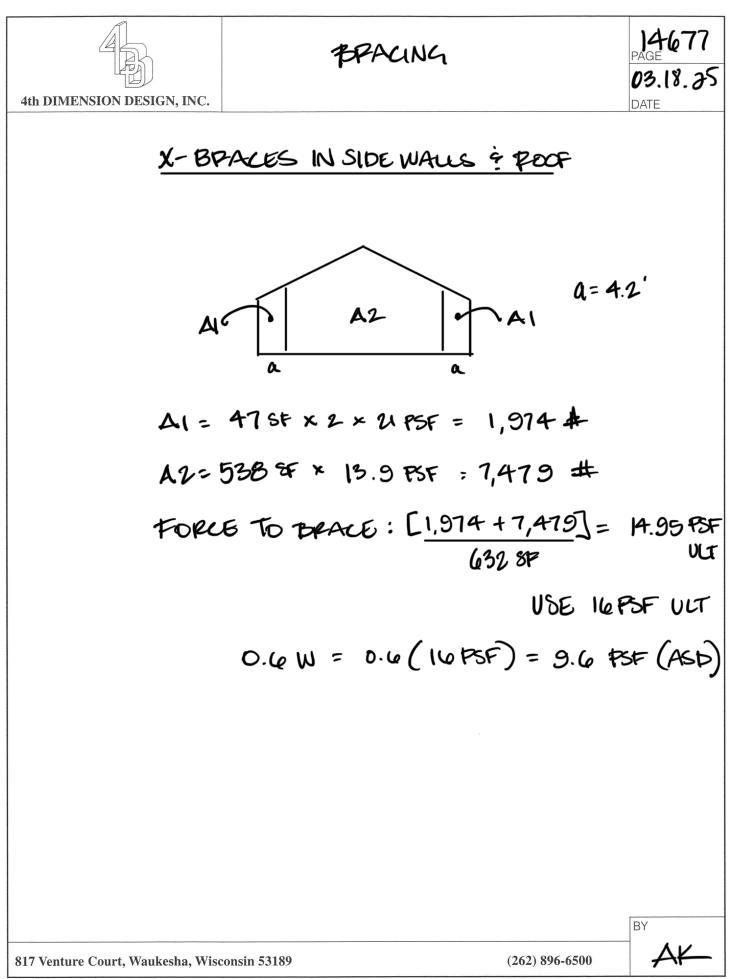
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.


4th Dimension Design, Inc.		3/25/2025	JOB TITLE	LA CROS	Page SE CENTRAL HIGH SCHOOL	
817 Venture Ct Waukesha, WI 53189 262.896.6500 andrea.kohl@4dd.com		CA	JOB NO. LCULATED BY CHECKED BY	14677	SHEET NO. DATE DATE	
Seismic Loads: IBC 2015	5				Strength Leve	I Forces
Risk Category : II						
Importance Factor (I) : 1.00 Site Class : D						
Ss (0.2 sec) = 5.30 % S1 (1.0 sec) = 3.60 %	0					
Fa = 1.600	Sms =	0.085	S _{DS} =	0.057	Design Category =	А
Fv = 2.400	Sm1 =	0.086	S _{D1} =	0.058	Design Category =	А
Seismic Design Category = A	ASCE7 Section	n 11.4.1 Excep	tion Applies			
Horizontal Struct Irregularities:No plan Irre Vertical Structural Irregularities:No vertical Flexible Diaphragms: Yes Building System: Building F Seismic resisting system: Steel ordir	Irregularity rame Systems					
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft	<pre>cores) = 3.25) = 2) = 3.25 = 0.057 = 0.058) = ρ Q_E +/- 0.28</pre>	S _{DS} D =		0.011D 0.011D	ρ = redundancy coefficient Q _E = horizontal seismic force D = dead loac	¢
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (En	TORS) = 3.25) = 2) = 3.25 = 0.057 = 0.058) = ρ Q _E +/- 0.2S) = Ωο Q _E +/- 0.2S	S _{DS} D =	ρQ _E +/- (Q _E = horizontal seismic force	£
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (Em	The limited TORS) = 3.25) = 2): 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$ DURES	S _{DS} D = S _{DS} D = 3	ρQ _E +/- (2.0Q _E +/- (0.011D	Q _E = horizontal seismic force D = dead loac	£
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R) Over-Strength Factor (Ωo) Deflection Amplification Factor (Cd Sps Sp1 Seismic Load Effect (E) Special Seismic Load Effect (Em) ERMITTED ANALYTICAL PROCEE Index Force Analysis (Seismic Ca	The limited TORS) = 3.25) = 2): 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$ DURES	S _{DS} D = S _{DS} D = ; Minimum late	ρQ _E +/- (2.0Q _E +/- (0.011D	Q _E = horizontal seismic force D = dead loac	E
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (E) ERMITTED ANALYTICAL PROCED Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi	t limited \overline{ORS}) = 3.25) = 2) : 3.25 = 0.057 = 0.058) = $\rho Q_E + - 0.2S$) : $\Omega \circ Q_E + - 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec	S _{DS} D = S _{DS} D = ; Minimum late	ρQ _E +/- (2.0Q _E +/- (0.011D	Q _E = horizontal seismic force D = dead loac t each floor leve	£
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (E) ERMITTED ANALYTICAL PROCED Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi	t limited CORS) = 3.25) = 2) : 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) : $\Omega \circ Q_E +/- 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec = 0.020	S _{DS} D = S _{DS} D = Minimum late rce Analysis	ρ Q _E +/- (2.0 Q _E +/- (ral force Fx = (0.011D 0.01Wx a	Q _E = horizontal seismic force D = dead loac	E
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (E) Special Seismic Load Effect (E) Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi Equivalent Lateral-Force Analysis Building period coef. (C _T)	t limited CORS) = 3.25) = 2) = 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$) = $\Omega \circ Q_E +/- 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec = 0.020) : $C_Th_n^=$) = ASCE7 map =	S _{DS} D = S S _{DS} D = 3 Minimum late rce Analysis 0.206 sec sec 12	ρ Q _E +/- (2.0 Q _E +/- (ral force Fx = (x = 0.75	0.011D 0.01Wx a	Q _E = horizontal seismic force D = dead loac t each floor leve Cu = 1.70	e
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R) Over-Strength Factor (Ω0) Deflection Amplification Factor (Cd Sps Spin Seismic Load Effect (E) Special Seismic Load Effect (Em ERMITTED ANALYTICAL PROCEE Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi Building period coef. (C _T) Approx fundamental period (Ta User calculated fundamental period (TL Seismic response coef. (Cs) need not exceed Cs	t limited CORS) = 3.25) = 2) = 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) = $\Omega o Q_E +/- 0.2S$) = $\Omega o Q_E +/- 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec = 0.020 () = $C_Th_n^2$ =) = ASCE7 map =) = S_DS//R = S = Sd11/RT =	$S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D$ Minimum late rce Analysis 0.206 sec 12 0.017 0.086	ρ Q _E +/- (2.0 Q _E +/- (ral force Fx = (x = 0.75	0.011D 0.01Wx a	Q _E = horizontal seismic force D = dead loac t each floor leve Cu = 1.70 ax = CuTa = 0.350	¢
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R) Over-Strength Factor (Ωo) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (E) ERMITTED ANALYTICAL PROCEE Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi Equivalent Lateral-Force Analysis Building period coef. (C _T) Approx fundamental period (Ta User calculated fundamental period (TL Seismic response coef. (Cs)	t limited CORS) = 3.25) = 2) = 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) = $\Omega o Q_E +/- 0.2S$) = $\Omega o Q_E +/- 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec = 0.020 () = $\Omega C_T h_n^2 =$) = ASCE7 map =) = S_DS//R = s = Sd11//RT = s = Sd11//RT =	$S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D = S_{DS}D$ Minimum late rce Analysis 0.206 sec 12 0.017 0.086 0.010 0.017	ρ Q _E +/- (2.0 Q _E +/- (ral force Fx = (x = 0.75	0.011D 0.01Wx a	Q _E = horizontal seismic force D = dead loac t each floor leve Cu = 1.70 ax = CuTa = 0.350	¢
System Structural Height Limit: Height not Actual Structural Height (hn) = 22.4 ft ESIGN COEFFICIENTS AND FACT Response Modification Coefficient (R) Over-Strength Factor (Ωo) Deflection Amplification Factor (Cd S _{DS} S _{D1} Seismic Load Effect (E) Special Seismic Load Effect (E) Special Seismic Load Effect (E) ERMITTED ANALYTICAL PROCEE Index Force Analysis (Seismic Ca Simplified Analysis - Use Equi Equivalent Lateral-Force Analysis Building period coef. (C _T) Approx fundamental period (Ta User calculated fundamental period (TL Seismic response coef. (Cs) need not exceed Cs but not less than Cs	t limited CORS) = 3.25) = 2) : 3.25 = 0.057 = 0.058) = $\rho Q_E +/- 0.2S$) : $\Omega o Q_E +/- 0.2S$) : $\Omega o Q_E +/- 0.2S$ DURES ategory A only) - ivalent Lateral Fo s - Permittec = 0.020) : $C_Th_n^=$) = $S_{DS}I/R =$ S = $Sd11/RT =$ =	$S_{DS}D =$ $S_{DS}D =$ Minimum laterized Analysis 0.206 sec 12 0.017 0.086 0.010 0.017 Design Ba	ρ Q _E +/- (2.0 Q _E +/- (ral force Fx = (x = 0.75	0.011D 0.01Wx a Tm 0.017W	Q _E = horizontal seismic force D = dead loac t each floor leve Cu = 1.70 ax = CuTa = 0.350	¢

Structure Type: Non- masonry, 4 story or less designed to accommodate the story drift

Allowable story drift = 0.025hsx no limit if single story is designed to accommodate the story drift

Site Soil Class: Results:	D - Stiff Soil		
S _S :	0.053	S _{D1} :	0.058
S ₁ :	0.036	T∟ :	12
F _a :	1.6	PGA :	0.025
F _v :	2.4	PGA M:	0.04
S _{MS} :	0.085	F _{PGA} :	1.6
S _{M1} :	0.087	l _e :	1
S _{DS} :	0.057		
eismic Design CEP Response Spectrum		0.06	Design Response Spectrum



Data Accessed:

Mon Feb 17 2025

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

03.18.25

4th DIMEN

PUPLINS

 $DL = 3P5F \quad U = 18P5F \quad SL = 16F5F$ $USL \sim see Statch$ $PI(PIDCLE) \quad trib = 4.146'$ $DL + LL = (87.1 PLF)(9:8')^{2} = 1.02 \text{ K-FT}$ $DL + SL = (78.8 PLF)(9:8'')^{2} = 0.92 \text{ K-FT}$ $BL + USL = (101.8 PLF)(9:8'')^{2} = 1.19 \text{ K-FT}$

$$0.6DL + 0.6WL = 200 PLF = 1.016 kff
 $48.1 PSF = 130 PLF = 1.016 kff$
 $48.1 PSF = 130 PLF = 1$
 $12.5 PLF = 1$
 $4.2 5.8' = 10'$$$

: 3" 16 GA PUPLIN = 1.4 KA> 1.02 KA

817 Venture

+0.60D+0.70E+0.60H

D Only

Lr Only

L Only

S Only W Only

Printed: 18 MAR 2025, 8:30PM File: 14677.ec6 **General Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 4TH DIMENSION DESIGN Lic. # : KW-06003674 DESCRIPTION: P1 RIDGE **General Beam Properties** 29,000.0 ksi Elastic Modulus Span Length = 9.667 ft 10.0 in^2 Moment of Inertia = 100.0 in^4 Span #1 Area = S(0.067) Lr(0075) D(0.013) W(-0.13) W(-0.2) 5 Span = 9.667 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1

Uniform Load : W = -0.20 k/ft, Extent = 0.0 -->> 4.20 ft, Tributary Width = 1.0 ft, (WL CC Z3)

Uniform Load : W = -0.130 k/ft, Extent = 4.20 -->> 9.667 ft, Tributary Width = 1.0 ft, (WL Z2)

Uniform Load : D = 0.0130 k/ft, Tributary Width = 1.0 ft, (DL)

Uniform Load : Lr = 0.0750 k/ft, Tributary Width = 1.0 ft, (Lr)

Uniform Load : S = 0.0670 k/ft, Tributary Width = 1.0 ft, (SL)

0.038

0.063

0.363

0.324

-0.858

0.038

0.063

0.363

0.324

-0.692

DESIGN SUMMARY Maximum Bending =			1.028 k-ft	Maximum Shear =	0.4774 k
Load Combination			+D+Lr+H	Load Combination	+0.60D+0.60W+0.60H
Span # where maximum occ	urs		Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	n		4.834 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient Max Upward Transient De Max Downward Total Defle Max Upward Total Deflection	flection ection		0.005 in -0.011 in 0.006 in -0.006 in	22646 10762 19300 19546	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.858	-0.692			
Overall MINimum	-0.858	-0.692			
+D+H	0.063	0.063			
+D+L+H	0.063	0.063			
+D+Lr+H	0.425	0.425			
+D+S+H	0.387	0.387			
+D+0.750Lr+0.750L+H	0.335	0.335			
+D+0.750L+0.750S+H	0.306	0.306			
+D+0.60W+H	-0.452	-0.352			
+D+0.70E+H	0.063	0.063			
+D+0.750Lr+0.750L+0.450W+H	-0.052	0.023			
+D+0.750L+0.750S+0.450W+H	-0.081	-0.006			
+D+0.750L+0.750S+0.5250E+H	0.306	0.306			
+0.60D+0.60W+0.60H	-0.477	-0.378			

	3/25/2025	Page 17 of 100
	FURUNS & GIRTS	14677
4th DIMEN		03.18.25
	ZURUNS	
	DL=3P5F U=18P5F SL=1(USL=38.3 PF	o fof
	P_2 trib = 4.099'	
	$DL + LL = (\frac{85,1 \text{RLF}}{85,1 \text{RLF}} (\frac{9.8}{9.8})^2 = 1.00 \text{K}$	FT
	DL+SL=(17 PLF)(9-8") ² = 0.91 K B	-fr
	$DL + USL = (155.2 RLF)(9-8)^{2} = 1.98$	K-FT
	$\begin{array}{r} 0.6 \text{ DL} + 0.6 \text{ WL} = 220 \text{ PLF} \\ \text{trib} = 4.583' \\ 4.2 \text{ S.8'} \\ 4.2 \text{ S.8'} \\ 13.8 \text{ PLF} \\ 10' \end{array}$	= 1.13 kfr
	: 3" 12GA PURUN = 2.205KA >	(.98 KA

AK

817 Venture

1

indica.kom@4dd.com					Printed: 1	8 MAR 2025, 9:20P
General Bean	n				Software copyright ENERCALC, INC. 198	File: 14677.ec6 33-2020. Build:12.20.8.24
Lic. # : KW-06003674						I DIMENSION DESI
DESCRIPTION: P	2					
General Beam Pro	perties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	9.667 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4
4	\$		S(0.1569917) Lr(0.073782) D(0.012297)		¢	*
↓	\ ↓		D(0.0†2297)			÷
4 · · · · · · · · · · · · · · · · · · ·	W(-0.2204423)	÷		¢	\$ \$	Ŷ
×		·				×
L			Span = 9.667 ft			
Applied Loads			Se	ervice loads e	ntered. Load Factors will be appl	ied for calculation

Load for Span Number 1

W Only

Uniform Load : W = -0.04810 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 4.583 ft, (WL CC Z3)

Uniform Load : W = -0.03130 ksf, Extent = 4.20 -->> 9.667 ft, Tributary Width = 4.583 ft, (WL Z2)

Uniform Load : D = 0.0030 ksf, Tributary Width = 4.099 ft, (DL)

Uniform Load : Lr = 0.0180 ksf, Tributary Width = 4.099 ft, (Lr)

Uniform Load : S = 0.03830 ksf, Tributary Width = 4.099 ft, (USL)

-0.946

-0.764

Maximum Bending =			1.978 k-ft	Maximum Shear =		0.8183 k
Load Combination			+D+S+H	Load Combination		+D+S+H
Span # where maximum occ	urs		Span # 1	Span # where maximum occurs	C C	Span # 1
Location of maximum on spa	in		4.834 ft	Location of maximum on span		0.000 ft
Maximum Deflection Max Downward Transient	Deflection		0.011 in	10818		
Max Upward Transient De			-0.012 in	9758		
Max Downward Total Defe			0.012 in	10033		
Max Upward Total Deflecti			-0.007 in	17500		
Vertical Reactions				Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2	_			
Overall MAXimum	-0.946	0.818				
Overall MINimum	-0.946	-0.764				
+D+H	0.059	0.059				
+D+L+H	0.059	0.059				
+D+Lr+H	0.416	0.416				
+D+S+H	0.818	0.818				
+D+0.750Lr+0.750L+H	0.327	0.327				
+D+0.750L+0.750S+H	0.629	0.629				
+D+0.60W+H	-0.508	-0.399				
+D+0.70E+H	0.059	0.059				
+D+0.750Lr+0.750L+0.450W+H	-0.099	-0.017				
+D+0.750L+0.750S+0.450W+H	0.203	0.285				
+D+0.750L+0.750S+0.5250E+H	0.629	0.629				
+0.60D+0.60W+0.60H	-0.532	-0.422				
+0.60D+0.70E+0.60H	0.036	0.036				
D Only	0.059	0.059				
Lr Only	0.357	0.357				
L Only						
S Only	0.759	0.759				
	0.01/	07/1				

FURUNS & GIRTS

03.18.25

4th DIMI

1

$$\frac{\text{PUBLINS}}{\text{DL}-3P5F} \quad \text{L}=18P5F} \quad \text{SL}=16P5F$$

$$P3 \qquad \text{trib}=4.063'$$

$$DL+LL=(85.1P4F)(9.8')^{2}=1.00 \text{ K-FT}$$

$$R=(17.2 \text{ P4F})(9.8'')^{2}=0.91 \text{ K-FT}$$

$$\begin{array}{rcl} 0.6 \text{ DL} + 0.6 \text{ WL} = 219 \text{ PLF} &= 1.13 \text{ kfr} \\ trib = 4.542' & 48.1 \text{ PSF} & 143 \text{ PLF} \\ \hline 48.1 \text{ PSF} & 31.3 \text{ Rf} \\ \hline 14 \text{ PLF} & 1 \\ \hline 4.2 & 5.8' \\ 10' \end{array}$$

: 3" 16GA PUPLIN= 1.4 KA> 1.13 KA

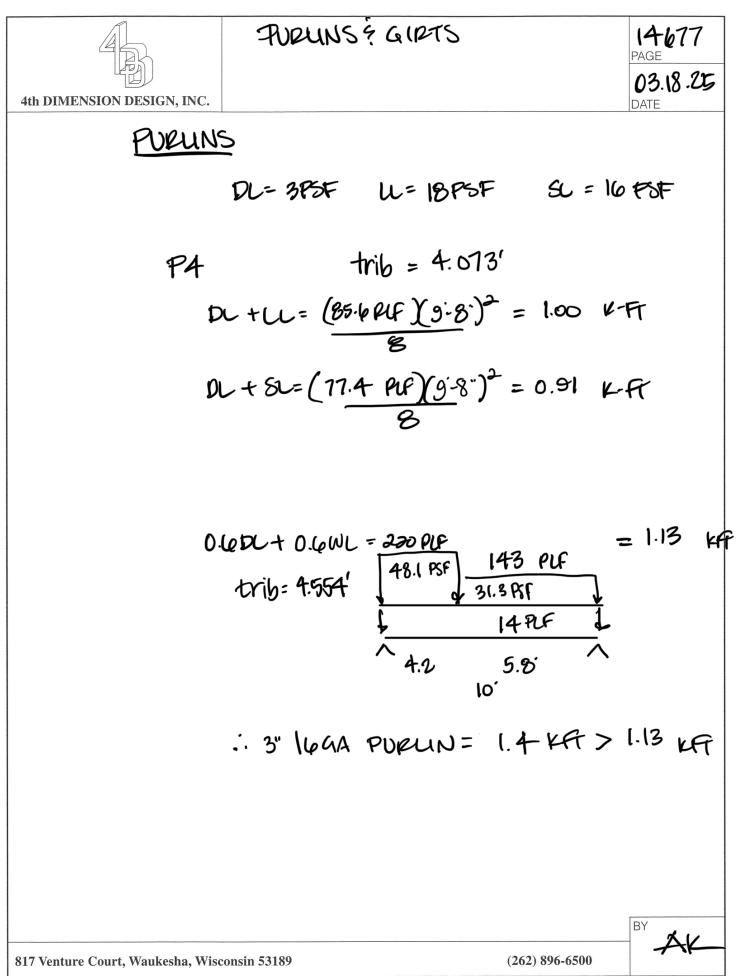
817 Ventu

W Only

Printed: 18 MAR 2025, 8:52PM File: 14677.ec6 **General Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 4TH DIMENSION DESIGN Lic. # : KW-06003674 DESCRIPTION: P3 **General Beam Properties** 29,000.0 ksi Elastic Modulus Span Length = 9.667 ft 10.0 in^2 100.0 in^4 Span #1 Area = Moment of Inertia = S(0.06501) Lr(0.07313) D(0.01219) W(-0.143) 5 W(-0.219) Span = 9.667 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : W = -0.2190 k/ft, Extent = 0.0 -->> 4.20 ft, Tributary Width = 1.0 ft, (WL CC Z3)

Uniform Load : W = -0.1430 k/ft, Extent = 4.20 -->> 9.667 ft, Tributary Width = 1.0 ft, (WL Z2)

Uniform Load : D = 0.01219 k/ft, Tributary Width = 1.0 ft, (DL)


Uniform Load : Lr = 0.07313 k/ft, Tributary Width = 1.0 ft, (Lr)

Uniform Load : S = 0.06501 k/ft, Tributary Width = 1.0 ft, (USL)

-0.941

-0.761

Maximum Bending =			1.129 k-ft	Maximum Shear =	0.5293 k
Load Combination		+0.60D+0.60	W+0.60H	Load Combination	+0.60D+0.60W+0.60H
Span # where maximum occu	urs		Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	n		4.302 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient I Max Upward Transient Def Max Downward Total Defle Max Upward Total Deflecti	flection		0.005 in -0.012 in 0.006 in -0.007 in	23225 9806 19907 17580	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.941	-0.761			
Overall MINimum	-0.941	-0.761			
+D+H	0.059	0.059			
+D+L+H	0.059	0.059			
+D+Lr+H	0.412	0.412			
+D+S+H	0.373	0.373			
+D+0.750Lr+0.750L+H	0.324	0.324			
+D+0.750L+0.750S+H	0.295	0.295			
+D+0.60W+H	-0.506	-0.397			
+D+0.70E+H	0.059	0.059			
+D+0.750Lr+0.750L+0.450W+H	-0.099	-0.018			
+D+0.750L+0.750S+0.450W+H	-0.129	-0.048			
+D+0.750L+0.750S+0.5250E+H	0.295	0.295			
+0.60D+0.60W+0.60H	-0.529	-0.421			
+0.60D+0.70E+0.60H	0.035	0.035			
D Only	0.059	0.059			
Lr Only L Only	0.353	0.353			
S Only	0.314	0.314			

Printed: 18 MAR 2025, 9:14PM File: 14677.ec6 **General Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 4TH DIMENSION DESIGN Lic. # : KW-06003674 DESCRIPTION: P4 **General Beam Properties** 29,000.0 ksi Elastic Modulus Span Length = 9.667 ft 10.0 in^2 100.0 in^4 Span #1 Area = Moment of Inertia = S(0.065168) Lr(0.073314) D(0.012219) W(-0.1425402) W(-0.2190474) Span = 9.667 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load : W = -0.04810 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 4.554 ft, (WL CC Z3)

Uniform Load : W = -0.03130 ksf, Extent = 4.20 -->> 9.667 ft, Tributary Width = 4.554 ft, (WL Z2)

Uniform Load : D = 0.0030 ksf, Tributary Width = 4.073 ft, (DL)

Uniform Load : Lr = 0.0180 ksf, Tributary Width = 4.073 ft, (Lr)

Uniform Load : S = 0.0160 ksf, Tributary Width = 4.073 ft, (USL)

DESIGN SUMMARY					
Maximum Bending =			1.127 k-ft	Maximum Shear =	0.5289 k
Load Combination		+0.60D+0.60	W+0.60H	Load Combination	+0.60D+0.60W+0.60H
Span # where maximum occu	urs		Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	n		4.302 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient I Max Upward Transient Def Max Downward Total Defle Max Upward Total Deflection	flection		0.005 in -0.012 in 0.006 in -0.007 in	23167 9820 19857 17612	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.940	-0.759			
Overall MINimum	-0.940	-0.759			
+D+H	0.059	0.059			
+D+L+H	0.059	0.059			
+D+Lr+H	0.413	0.413			
+D+S+H	0.374	0.374			
+D+0.750Lr+0.750L+H	0.325	0.325			
+D+0.750L+0.750S+H	0.295	0.295			
+D+0.60W+H	-0.505	-0.396			
+D+0.70E+H	0.059	0.059			
+D+0.750Lr+0.750L+0.450W+H	-0.098	-0.017			
+D+0.750L+0.750S+0.450W+H	-0.128	-0.046			
+D+0.750L+0.750S+0.5250E+H	0.295	0.295			
+0.60D+0.60W+0.60H	-0.529	-0.420			
+0.60D+0.70E+0.60H	0.035	0.035			
D Only	0.059	0.059			
Lr Only	0.354	0.354			
L Only					
S Only	0.315	0.315			

Page 23 of 100

14677

4th DIM

1

$$\frac{PUPUNS}{DL - 3P5F} = U = 18P5F \quad SL = 16P5F$$

$$P5 \qquad trib = 4.24'$$

$$DL + UL = (\underline{99.1P4F}(\underline{9.8})^{2} = 1.04 \text{ k-Ff}$$

$$BL + SL = (\underline{80.4P4F}(\underline{9.8})^{2} = 0.95 \text{ k-Ff}$$

$$BL + SL = (\underline{80.4P4F}(\underline{9.8})^{2} = 0.95 \text{ k-Ff}$$

: 3" 16 GA PURUN = 1.4 KA > 1.173 KA

817 Ventu

Printed: 18 MAR 2025, 9:17PM File: 14677.ec6 **General Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 4TH DIMENSION DESIGN Lic. # : KW-06003674 DESCRIPTION: P5 **General Beam Properties** 29,000.0 ksi Elastic Modulus Span Length = 9.667 ft 10.0 in^2 Moment of Inertia = 100.0 in^4 Span #1 Area = S(0.06784) Lr(0.07632) D(0.01272) W(-0.148362) 5 W(-0.227994) Span = 9.667 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load : W = -0.04810 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 4.740 ft, (WL CC Z3)

Uniform Load : W = -0.03130 ksf, Extent = 4.20 -->> 9.667 ft, Tributary Width = 4.740 ft, (WL Z2)

Uniform Load : D = 0.0030 ksf, Tributary Width = 4.240 ft, (DL)

Uniform Load : Lr = 0.0180 ksf, Tributary Width = 4.240 ft, (Lr)

Uniform Load : S = 0.0160 ksf, Tributary Width = 4.240 ft, (USL)

DESIGN SUMMARY					
Maximum Bending =			1.173 k-ft	Maximum Shear =	0.5505 k
Load Combination		+0.60D+0.60	W+0.60H	Load Combination	+0.60D+0.60W+0.60H
Span # where maximum occ	urs		Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	n		4.302 ft	Location of maximum on span	0.000 ft
Maximum Deflection					
Max Downward Transient			0.005 in	22254	
Max Upward Transient De			-0.012 in	9435	
Max Downward Total Deflect			0.006 in	19075	
Max Upward Total Deflecti	on		-0.007 in	16921	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.979	-0.790			
Overall MINimum	-0.979	-0.790			
+D+H	0.061	0.061			
+D+L+H	0.061	0.061			
+D+Lr+H	0.430	0.430			
+D+S+H	0.389	0.389			
+D+0.750Lr+0.750L+H	0.338	0.338			
+D+0.750L+0.750S+H	0.307	0.307			
+D+0.60W+H	-0.526	-0.412			
+D+0.70E+H	0.061	0.061			
+D+0.750Lr+0.750L+0.450W+H	-0.102	-0.017			
+D+0.750L+0.750S+0.450W+H	-0.133	-0.048			
+D+0.750L+0.750S+0.5250E+H	0.307	0.307			
+0.60D+0.60W+0.60H	-0.550	-0.437			
+0.60D+0.70E+0.60H	0.037	0.037			
D Only	0.061	0.061			
Lr Only	0.369	0.369			
L Only					
S Only	0.328	0.328			
W Only	-0.979	-0.790			

	3/25/2025	Page 25 of 100
4th DIMENSION	DESIGN, INC. GIRTS	14677 PAGE 03.19.25 DATE
GI	$\frac{25}{1,27.8}$ $\frac{24}{23.8}$ $\frac{1}{2}$ $\frac{1}{2}$	3.75'
	0-5.0 4	= 0.710 K.Fr
G2	$\frac{25}{\sqrt{31.8}} = \frac{24}{\sqrt{338}} + \frac{1}{\sqrt{4.2}} = \frac{1}{\sqrt{5.8}} + \frac$	3.26
	10° MMAR = 10° MMAR = ∴ 3″ (86A.	0.617 K-FT
Q3	$\frac{25}{29.4}$ $\frac{24}{24.6}$ $\frac{1}{24.6}$ $\frac{1}{29.4}$ $\frac{1}{24.6}$ \frac	2.75' .36 KR
	4.2° 3.8 × 0° 4000 8'	
G4	× 10:-6" × .:3' 189A	44= 0.887 KFF BYAK
817 Venture Court	, Waukesha, Wisconsin 53189 (262) 896-6	500

4th Dimension Design, I 817 Venture Court Waukesha, WI 53189 Phone (262) 896-6500 andrea.kohl@4dd.com	nc.		3/25/202	25 Project Title: UGS Engineer: Project ID: 146 Project Descr:	S LA CROSSE CENTRA 77	Page 26 of 100 L HIGH SCHOOL
					Printed:	20 MAR 2025, 1:40PM
General Bean	n			c	Software copyright ENERCALC, INC. 19	File: 14677.ec6
Lic. # : KW-06003674						H DIMENSION DESIGN
DESCRIPTION: G	1					
General Beam Pro	perties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	10.0 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4
\$ \$	W(-0.10425)	¢	÷	\sim	(-0.08925)	
×			Ł	÷	* *	×
×						×
			Span = 10.	.0 ft		I
•						

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1 Uniform Load : W = -0.02380 ksf, Extent = 4.20 -->> 10.0 ft, Tributary Width = 3.750 ft, (WL Z4)

Uniform Load : W = -0.02780 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 3.750 ft, (WL CC Z5)

DESIGN SUMMARY					
Maximum Bending =			0.710 k-ft	Maximum Shear =	0.2976 k
Load Combination		+D+0	.60W+H	Load Combination	+D+0.60W+H
Span # where maximum occ	urs	9	Span # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	an		4.850 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient Max Upward Transient De Max Downward Total Deflect Max Upward Total Deflect	flection		0.000 in -0.007 in 0.000 in -0.004 in	0 16173 0 26956	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.496	-0.459			
Overall MINimum	-0.496	-0.459			
+D+H					
+D+L+H					
+D+Lr+H					
+D+S+H					
+D+0.750Lr+0.750L+H					
+D+0.750L+0.750S+H	0.000	0.07/			
+D+0.60W+H	-0.298	-0.276			
+D+0.70E+H	0.000	0.007			
+D+0.750Lr+0.750L+0.450W+H	-0.223	-0.207			
+D+0.750L+0.750S+0.450W+H +D+0.750L+0.750S+0.5250E+H	-0.223	-0.207			
+0.60D+0.60W+0.60H +0.60D+0.70E+0.60H D Only Lr Only L Only S Only W Only	-0.298 -0.496	-0.276 -0.459			
E Only H Only					

4th Dimension Design, I 817 Venture Court Waukesha, WI 53189 Phone (262) 896-6500 andrea.kohl@4dd.com	nc.		3/25/20	25 Project Title: UGS Engineer: Project ID: 146 Project Descr:	S LA CROSSE CENTR/ 77	Page 27 of 100 AL HIGH SCHOOL
					Printed:	20 MAR 2025, 1:40PM
General Bean	า			c	Software copyright ENERCALC, INC. 1	File: 14677.ec6
Lic. # : KW-06003674						TH DIMENSION DESIGN
DESCRIPTION: G	2					
General Beam Pro	perties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	10.0 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4
	W(-0.090628)					
♦ • •	¢	¢			(-0.077588)	÷
×				•		×
×						—
			Span = 10.	0 ft		I
•						

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1 Uniform Load : W = -0.02380 ksf, Extent = 4.20 -->> 10.0 ft, Tributary Width = 3.260 ft, (WL Z4)

Uniform Load : W = -0.02780 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 3.260 ft, (WL CC Z5)

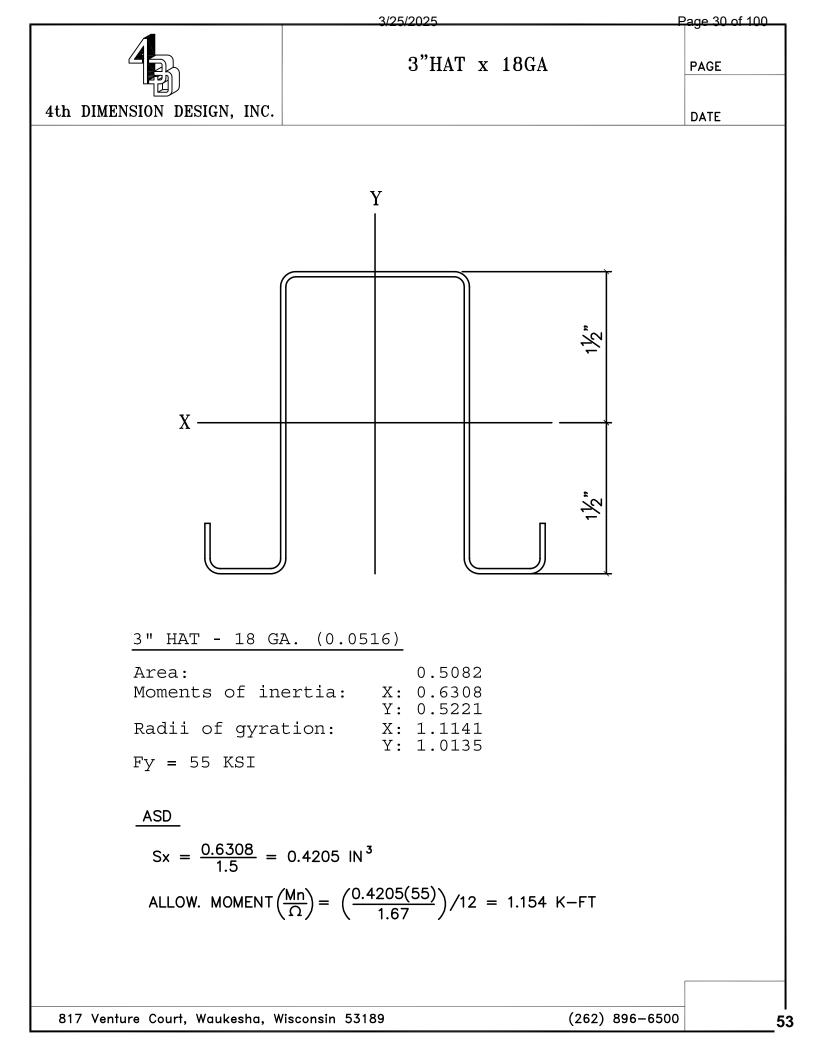
DESIGN SUMMARY					
Maximum Bending =			0.617 k-ft	Maximum Shear =	0.2587 k
Load Combination		+D+0.	60W+H	Load Combination	+D+0.60W+H
Span # where maximum occu	urs	S	pan # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	n		4.850 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient I Max Upward Transient Def Max Downward Total Defle Max Upward Total Deflection	flection	-	0.000 in 0.006 in 0.000 in 0.004 in	0 18604 0 31008	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.431	-0.399			
Overall MINimum	-0.431	-0.399			
+D+H					
+D+L+H					
+D+Lr+H					
+D+S+H					
+D+0.750Lr+0.750L+H					
+D+0.750L+0.750S+H					
+D+0.60W+H	-0.259	-0.240			
+D+0.70E+H					
+D+0.750Lr+0.750L+0.450W+H	-0.194	-0.180			
+D+0.750L+0.750S+0.450W+H	-0.194	-0.180			
+D+0.750L+0.750S+0.5250E+H					
+0.60D+0.60W+0.60H +0.60D+0.70E+0.60H D Only Lr Only	-0.259	-0.240			
L Only S Only W Only E Only	-0.431	-0.399			

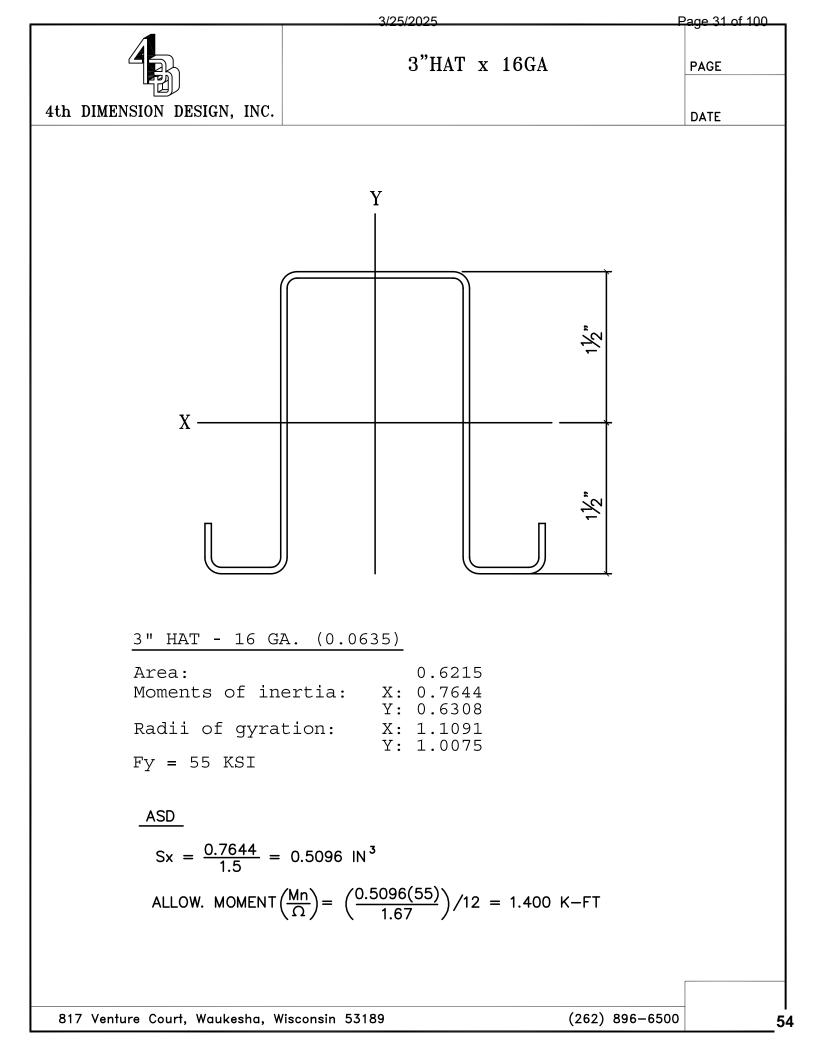
4th Dimension Design, In 817 Venture Court Waukesha, WI 53189 Phone (262) 896-6500 andrea.kohl@4dd.com	с.		3/25/20	Engineer:		Page 28 of 100 L HIGH SCHOOL
General Beam					Software convright ENEDCALC, INC, 100	File: 14677.ec6
Lic. # : KW-06003674		_	_	_	Software copyright ENERCALC, INC. 198 4TF	1 DIMENSION DESIGN
DESCRIPTION: G3	;					
General Beam Prop	erties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	8.0 ft	Area =	10.0 in^2	2 Moment of Inertia =	100.0 in^4
4	<u>(+0.08085)</u>	4	, , , , , , , , , , , , , , , , , , , ,	7 7	W(-0.06765)	÷.
×			Y	· · · ·	· · · · · ·	×
×						×
			Span = 8.	0 ft		
4						•

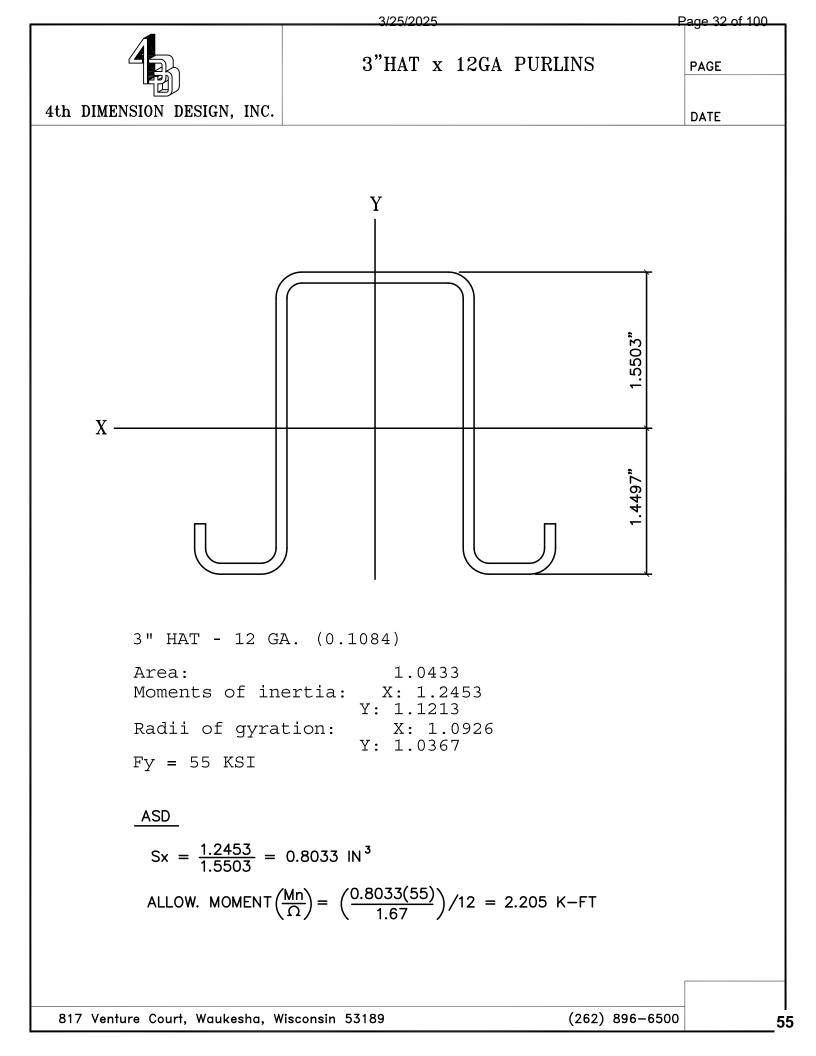
Applied Loads

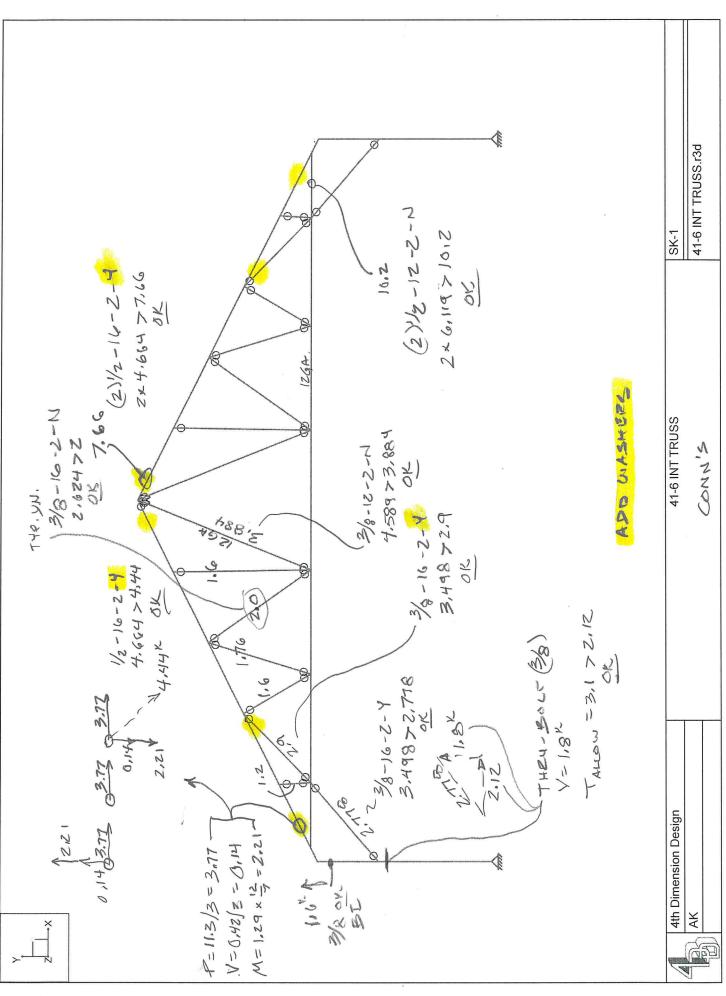
Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1 Uniform Load : W = -0.02460 ksf, Extent = 4.20 -->> 8.0 ft, Tributary Width = 2.750 ft, (WL Z4)


Uniform Load : W = -0.02940 ksf, Extent = 0.0 -->> 4.20 ft, Tributary Width = 2.750 ft, (WL CC Z5)

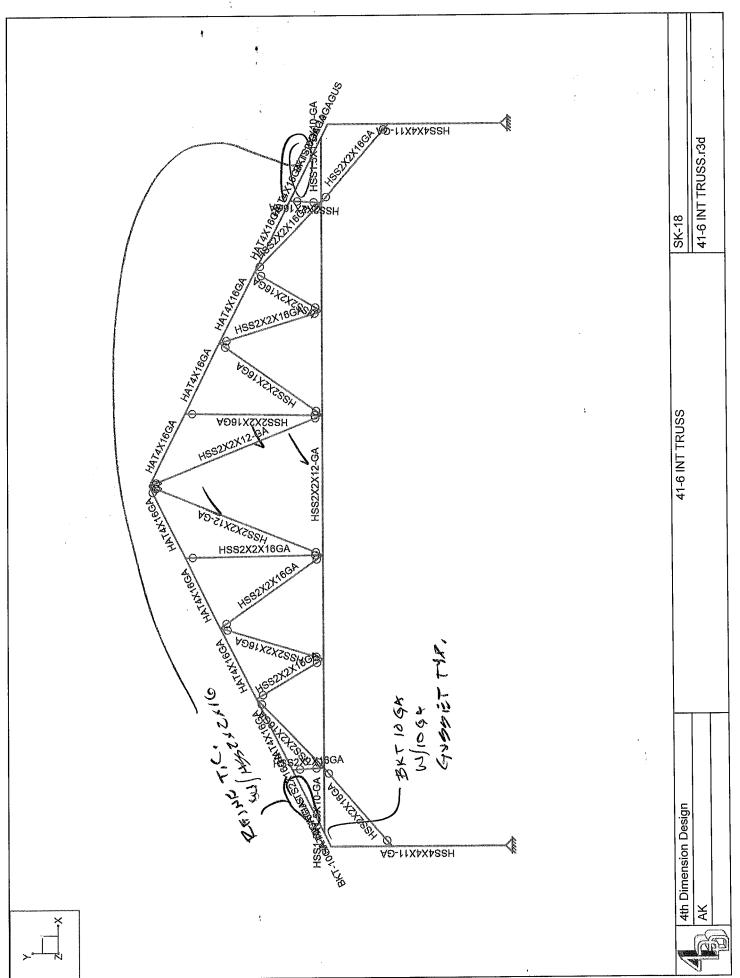

DESIGN SUMMARY					
Maximum Bending =			0.360 k-ft	Maximum Shear =	0.1869 k
Load Combination		+D+0.6	50W+H	Load Combination	+D+0.60W+H
Span # where maximum occ	urs	S	oan # 1	Span # where maximum occurs	Span # 1
Location of maximum on spa	in		3.840 ft	Location of maximum on span	0.000 ft
Maximum Deflection Max Downward Transient Max Upward Transient De Max Downward Total Deflect Max Upward Total Deflect	flection ection	-(0.000 in 0.002 in 0.000 in 0.001 in	0 40070 0 66783	
Vertical Reactions				Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2			
Overall MAXimum	-0.311	-0.285			
Overall MINimum	-0.311	-0.285			
+D+H					
+D+L+H					
+D+Lr+H					
+D+S+H					
+D+0.750Lr+0.750L+H					
+D+0.750L+0.750S+H					
+D+0.60W+H	-0.187	-0.171			
+D+0.70E+H					
+D+0.750Lr+0.750L+0.450W+H	-0.140	-0.128			
+D+0.750L+0.750S+0.450W+H +D+0.750L+0.750S+0.5250E+H	-0.140	-0.128			
+0.60D+0.60W+0.60H +0.60D+0.70E+0.60H D Only Lr Only L Only S Only	-0.187	-0.171			
W Only E Only H Only	-0.311	-0.285			

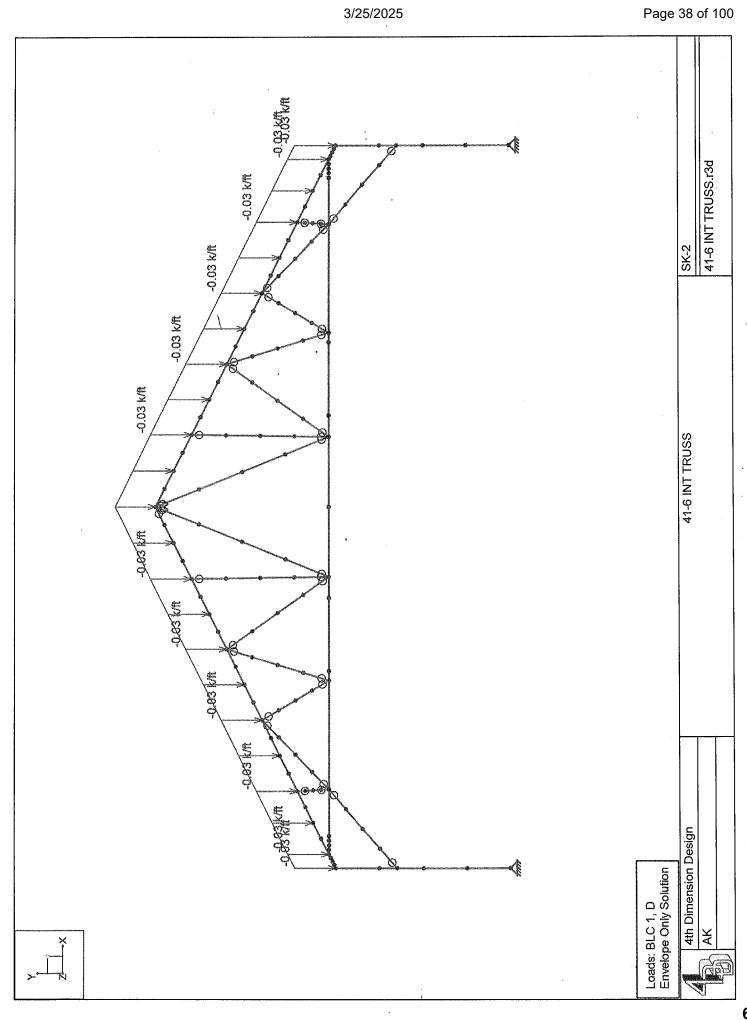

					Printed:	20 MAR 2025, 1:42PM
General Bean	n			:	Software copyright ENERCALC, INC. 1	File: 14677.ec6 983-2020, Build:12.20.8.24
Lic. # : KW-06003674						H DIMENSION DESIGN
DESCRIPTION: 0	34					
General Beam Pro	perties					
Elastic Modulus	29,000.0 ksi					
Span #1	Span Length =	10.50 ft	Area =	10.0 in^2	Moment of Inertia =	100.0 in^4
			W(-0.10665))		
×	~		~		V	×
*						×
			Span = 10.50	ft		
4						
Applied Loads				Service loads ente	ered. Load Factors will be ap	plied for calculations.


Uniform Load : W = -0.02370 ksf, Tributary Width = 4.50 ft, (WL Z4)

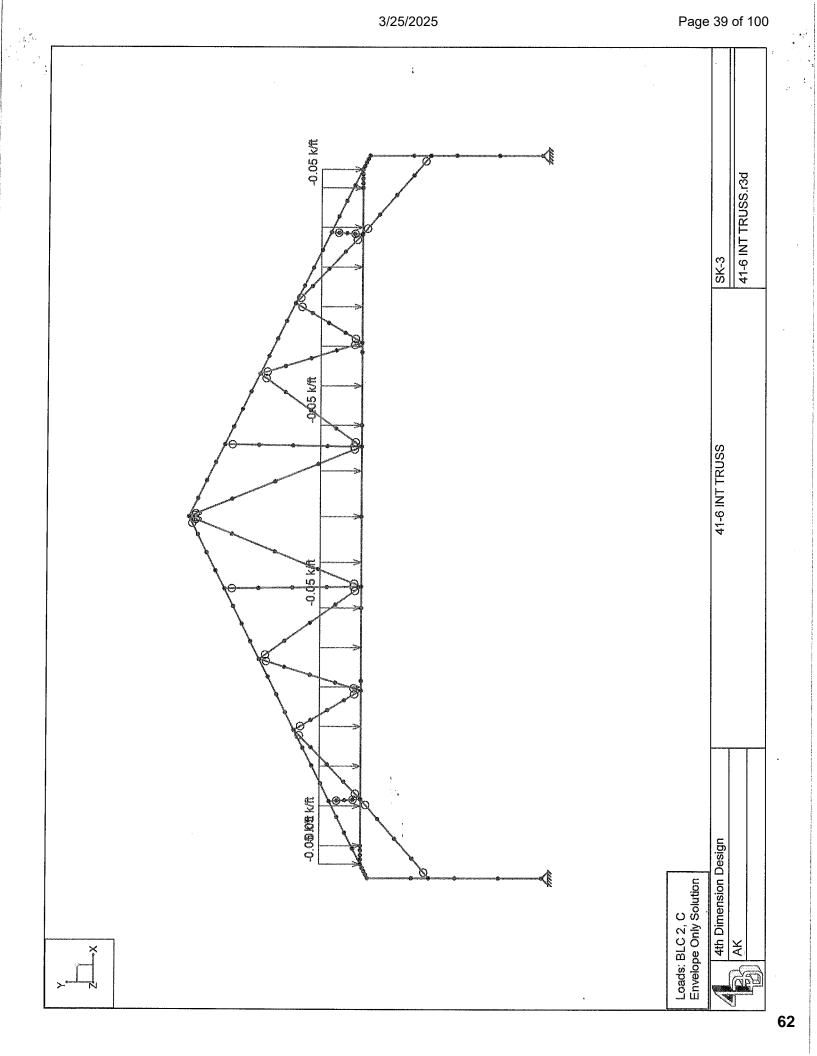
DESIGN SUMMARY			0.0001.5			0.0050
Maximum Bending =			0.882 k-ft	Maximum Shear =		0.3359 k
Load Combination			60W+H	Load Combination		+D+0.60W+H
Span # where maximum occ	urs	S	pan # 1	Span # where maximum occurs		Span # 1
Location of maximum on spa	in		5.250 ft	Location of maximum on span		0.000 ft
Maximum Deflection Max Downward Transient	Deflection		0.000 in	0		
Max Upward Transient De	flection		0.010 in	12428		
Max Downward Total Defle	ection		0.000 in	0		
Max Upward Total Deflect	ion	-	0.006 in	20713		
Vertical Reactions				Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	-0.560	-0.560				
Overall MINimum	-0.560	-0.560				
+D+H						
+D+L+H						
+D+Lr+H						
+D+S+H						
+D+0.750Lr+0.750L+H						
+D+0.750L+0.750S+H	0.227	0.22/				
+D+0.60W+H +D+0.70E+H	-0.336	-0.336				
+D+0.750Lr+0.750L+0.450W+H	-0.252	-0.252				
+D+0.750L+0.750S+0.450W+H	-0.252	-0.252				
+D+0.750L+0.750S+0.5250E+H	-0.232	-0.252				
+0.60D+0.60W+0.60H	-0.336	-0.336				
+0.60D+0.70E+0.60H	0.000	0.000				
D Only						
Lr Only						
L Only						
S Only						
W Only	-0.560	-0.560				
E Only						
H Only						

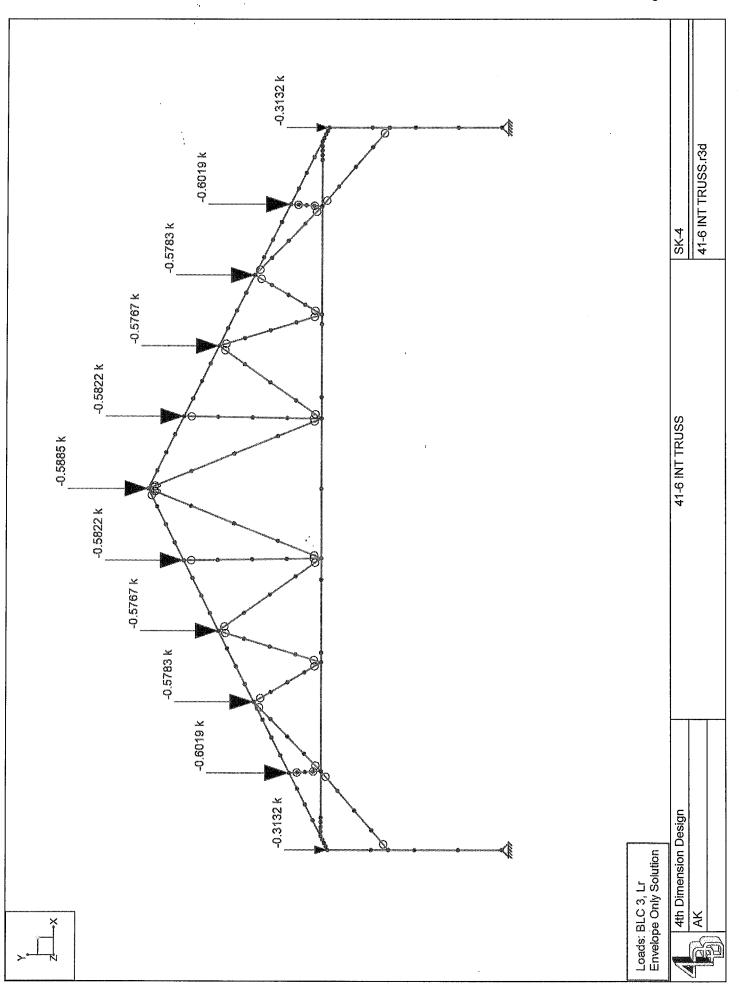
	Z	\succ	Z	×	Z	≻	z	≻	Z	×	Z	\succ	z	≻	Z	≻	Z	×	Z	×	Z	≻	Z	≻	Z	×	Z	\succ	Z	≻	Z	≻
CASE	1/2 - 8 - 2 -	1/2 - 8 - 2 -	1/2 - 8 - 1 -	1/2 - 8 - 1 -	1/2 - 10 - 2 -	1/2 - 10 - 2 -	1/2 - 10 - 1 -	1/2 - 10 - 1 -	1/2 - 11 - 2 -	1/2 - 11 - 2 -	1/2 - 11 - 1 -	1/2 - 11 - 1 -	1/2 - 12 - 2 -	1/2 - 12 - 2 -	1/2 - 12 - 1 -	1/2 - 12 - 1 -	1/2 - 13 - 2 -	1/2 - 13 - 2 -	1/2 - 13 - 1 -	1/2 - 13 - 1 -	1/2 - 14 - 2 -	1/2 - 14 - 2 -	1/2 - 14 - 1 -	1/2 - 14 - 1 -	1/2 - 16 - 2 -	1/2 - 16 - 2 -	1/2 - 16 - 1 -	1/2 - 16 - 1 -	1/2 - 18 - 2 -	1/2 - 18 - 2 -	1/2 - 18 - 1 -	1/2 - 18 - 1 -
CONN. ALLOW (KIPS PER BOLT)	9.425	9.425	4.712	4.712	7.868	9.425	3.934	4.712	6.997	9.329	3.498	4.664	6.119	8.159	3.060	4.079	5.247	6.997	2.624	3.498	4.370	5.827	2.185	2.913	3.498	4.664	1.749	2.332	2.796	3.728	1.398	1.864
SHEAR ALLOW(KIPS)	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712	9.425	9.425	4.712	4.712
BRG. ALLOW (KIPS)	9.617	12.823	4.809	6.412	7.868	10.491	3.934	5.246	6.997	9.329	3.498	4.664	6.119	8.159	3.060	4.079	5.247	6.997	2.624	3.498	4.370	5.827	2.185	2.913	3.498	4.664	1.749	2.332	2.796	3.728	1.398	1.864
WASHER FACTOR	0.750	1.000	057.0	1.000	0.750	1.000	057.0	1.000	0.750	1.000	0.750	1.000	057.0	1.000	057.0	1.000	057.0	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	057.0	1.000
WASHER OR OUTSIDE MEMB.	z	7	z	۲	Z	٢	z	۲	Z	γ	Z	۲	z	۲	Z	γ	z	٢	N	۲	Z	Υ	N	Υ	N	Υ	N	Υ	Z	Υ	Z	Υ
SHEAR PLANES	2	2	1	1	2	2	L	L L	2	2	L L	L	2	2	L L	L L	2	2	1	L L	2	2	1	1	2	2	1	1	2	2	L L	L
MAT. THICK(IN)	0.1644	0.1644	0.1644	0.1644	0.1345	0.1345	0.1345	0.1345	0.1196	0.1196	0.1196	0.1196	0.1046	0.1046	0.1046	0.1046	0.0897	0.0897	0.0897	0.0897	0.0747	0.0747	0.0747	0.0747	0.0598	0.0598	0.0598	0.0598	0.0478	0.0478	0.0478	0.0478
MAT. GAGE	8	ω	8	8	10	10	10	10	11	11	11	11	12	12	12	12	13	13	13	13	14	14	14	14	16	16	16	16	18	18	18	18
BOLT AREA(IN^2)	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196	0.196
BOLT DIAM(IN)	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

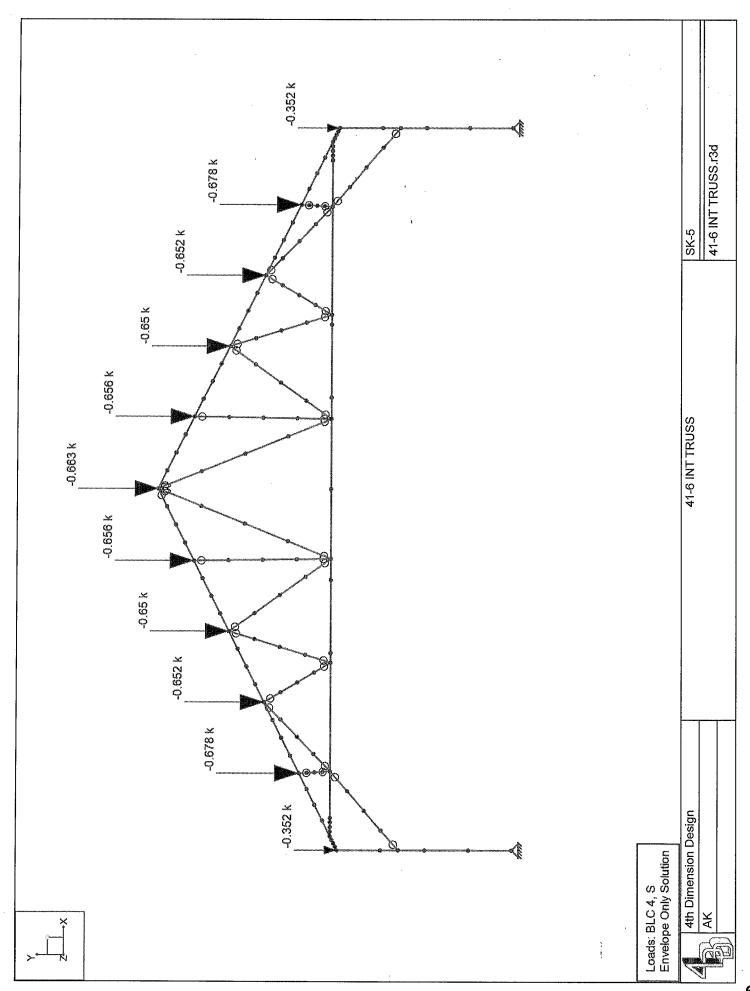

3/8 "DIAM. A325/GRADE 5 COMBINED SHEAR & TENSION AISC 360-05

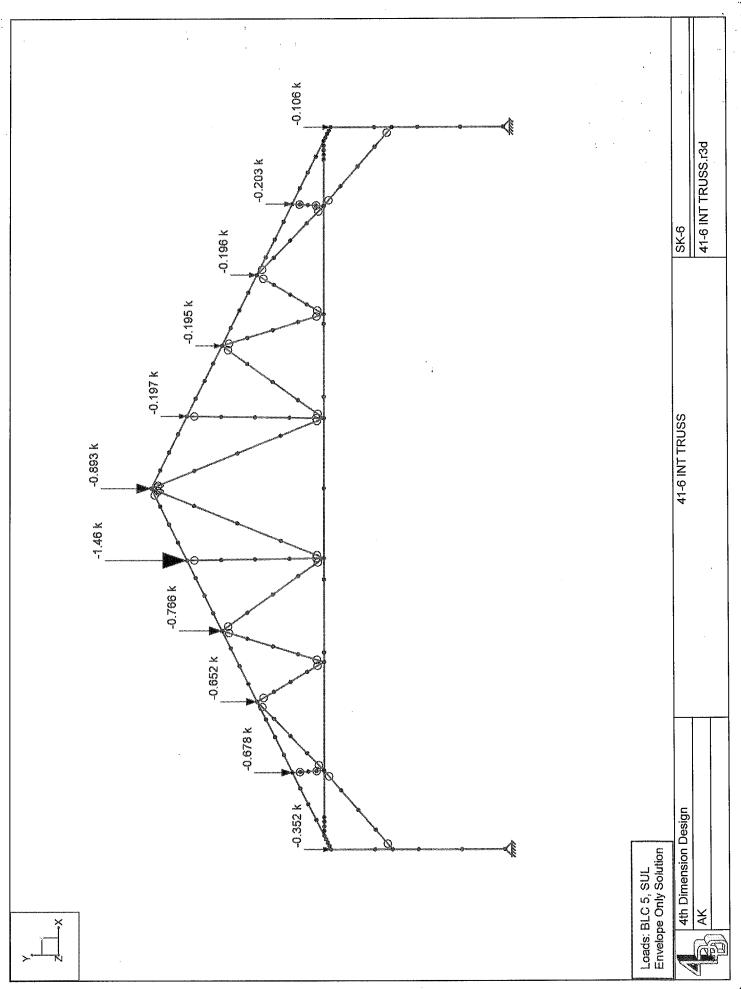

Fnt (ksi) = 90 Fnv (ksi - threads included in shear plane) = 48 ASD Safety factor (omega) = 2

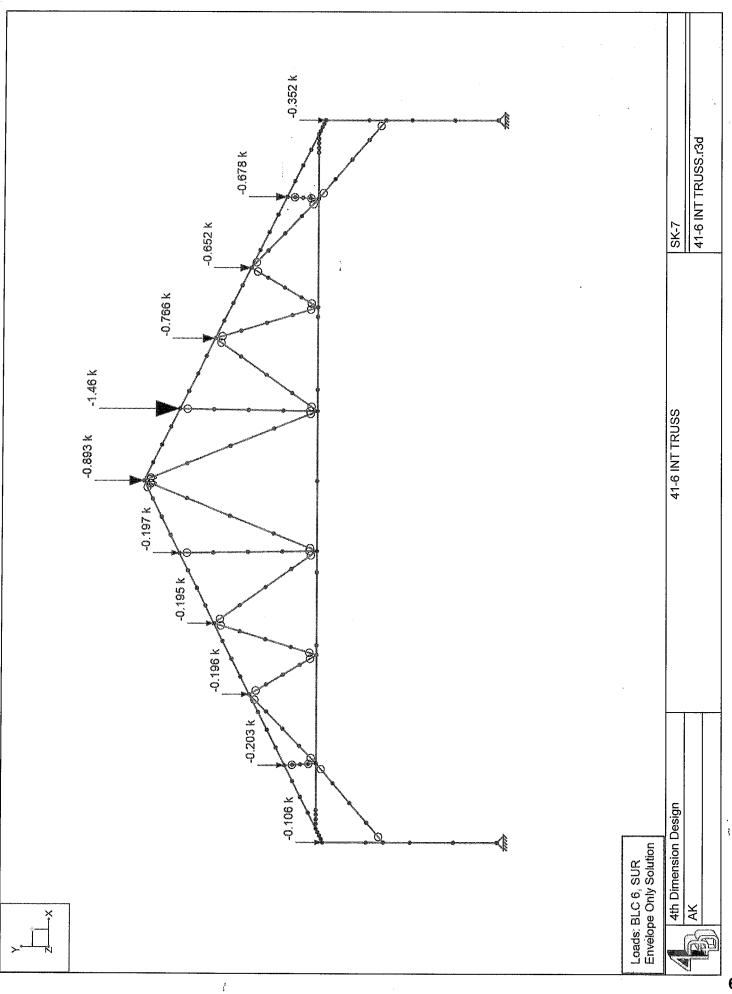
BOLT DIAM.		SHEAR	SHEAR STRESS		
(IN)	(SQ IN)	(KIPS)	(KIPS/SQ IN)	STRESS (KIPS/SQ IN)	· · · · · · · · · · · · · · · · · · ·
3/8	0.1104	0.000	0.000	45.000	5.0
3/8	0.1104	0.795	7.198	45.000	5.0
3/8	0.1104	0.800	7.243	44.919	5.0
3/8	0.1104	0.900	8.149	43.221	4.8
3/8	0.1104	1.000	9.054	41.523	4.6
3/8	0.1104	1.100	9.960	39.826	4.4
3/8	0.1104	1.200	10.865	38.128	4.2
3/8	0.1104	1.300	11.770	36.431	4.0
3/8	0.1104	1.400	12.676	34.733	3.8
3/8	0.1104	1.500	13.581	33.035	3.6
3/8	0.1104	1.600	14.487	31.338	3.5
3/8	0.1104	1.700	15.392	29.640	3.3
3/8	0.1104	1.800	16.297	27.942	3.1
3/8	0.1104	1.900	17.203	26.245	2.9
3/8	0.1104	2.000	18.108	24.547	2.7
3/8	0.1104	2.100	19.014	22.849	2.5
3/8	0.1104	2.200	19.919	21.152	2.3
3/8	0.1104	2.300	20.825	19.454	2.1
3/8	0.1104	2.400	21.730	17.756	2.0
3/8	0.1104	2.500	22.635	16.059	1.8
3/8	0.1104	2.600	23.541	14.361	1.6
3/8	0.1104	2.651	24.000	13.500	1.5

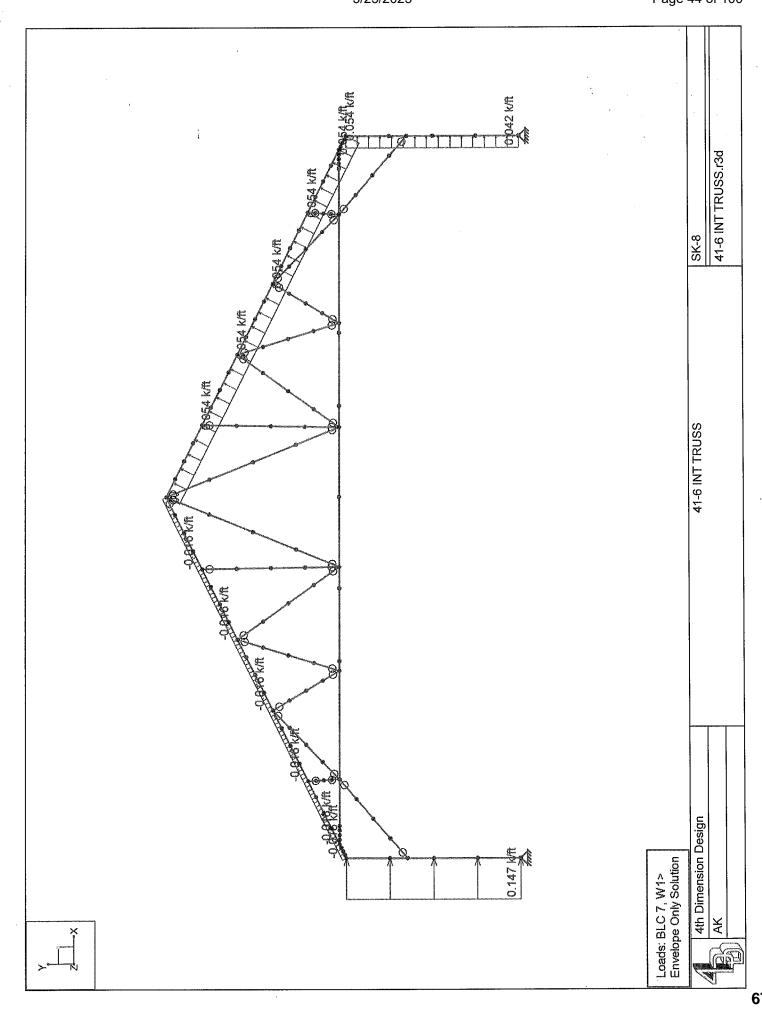

CASE	3/8 - 8 - 2 - N	3/8 - 8 - 2 - Y	3/8 - 8 - 1 - N	3/8 - 8 - 1 - Y	3/8 - 10 - 2 - N	3/8 - 10 - 2 - Ү	3/8 - 10 - 1 - N	3/8 - 10 - 1 - Ү	3/8 - 11 - 2 - N	3/8 - 11 - 2 - Y	3/8 - 11 - 1 - N	3/8 - 11 - 1 - Y	3/8 - 12 - 2 - N	3/8 - 12 - 2 - Ү	3/8 - 12 - 1 - N	3/8 - 12 - 1 - Ү	3/8 - 13 - 2 - N	3/8 - 13 - 2 - Y	3/8 - 13 - 1 - N	3/8 - 13 - 1 - Y	3/8 - 14 - 2 - N	3/8 - 14 - 2 - Ү	3/8 - 14 - 1 - N	3/8 - 14 - 1 - Ү	3/8 - 16 - 2 - N	3/8 - 16 - 2 - Y	3/8 - 16 - 1 - N	3/8 - 16 - 1 - Y	3/8 - 18 - 2 - N	3/8 - 18 - 2 - Ү	3/8 - 18 - 1 - N	3/8 - 18 - 1 - Ү
CONN. ALLOW (KIPS PER BOLT)	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.247	5.301	2.624	2.651	4.589	5.301	2.295	2.651	3.936	5.247	1.968	2.624	3.277	4.370	1.639	2.185	2.624	3.498	1.312	1.749	2.097	2.796	1.049	1.398
SHEAR ALLOW(KIPS)	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651	5.301	5.301	2.651	2.651
BRG. ALLOW (KIPS)	7.213	9.617	3.607	4.809	5.901	7.868	2.951	3.934	5.247	6.997	2.624	3.498	4.589	6.119	2.295	3.060	3.936	5.247	1.968	2.624	3.277	4.370	1.639	2.185	2.624	3.498	1.312	1.749	2.097	2.796	1.049	1.398
WASHER FACTOR	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000	0.750	1.000
WASHER OR OUTSIDE MEMB.	z	~	z	γ	z	~	z	~	z	γ	Z	۲	z	~	Z	٢	z	٢	z	۲	Z	Υ	Z	Υ	N	Υ	z	γ	Z	7	Z	Y
SHEAR PLANES	2	2	+	1	2	2	٢	Ł	2	2	1	4	2	2	1	1	2	2	4	-	2	2	1	1	2	2	4	1	2	2	1	1
MAT. THICK(IN)	0.1644	0.1644	0.1644	0.1644	0.1345	0.1345	0.1345	0.1345	0.1196	0.1196	0.1196	0.1196	0.1046	0.1046	0.1046	0.1046	0.0897	0.0897	0.0897	0.0897	0.0747	0.0747	0.0747	0.0747	0.0598	0.0598	0.0598	0.0598	0.0478	0.0478	0.0478	0.0478
MAT. GAGE	ω	ω	8	8	10	10	10	10	11	11	11	11	12	12	12	12	13	13	13	13	14	14	14	14	16	16	16	16	18	18	18	18
BOLT AREA(IN^2)	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
BOLT DIAM(IN)	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8




¥.: Т.

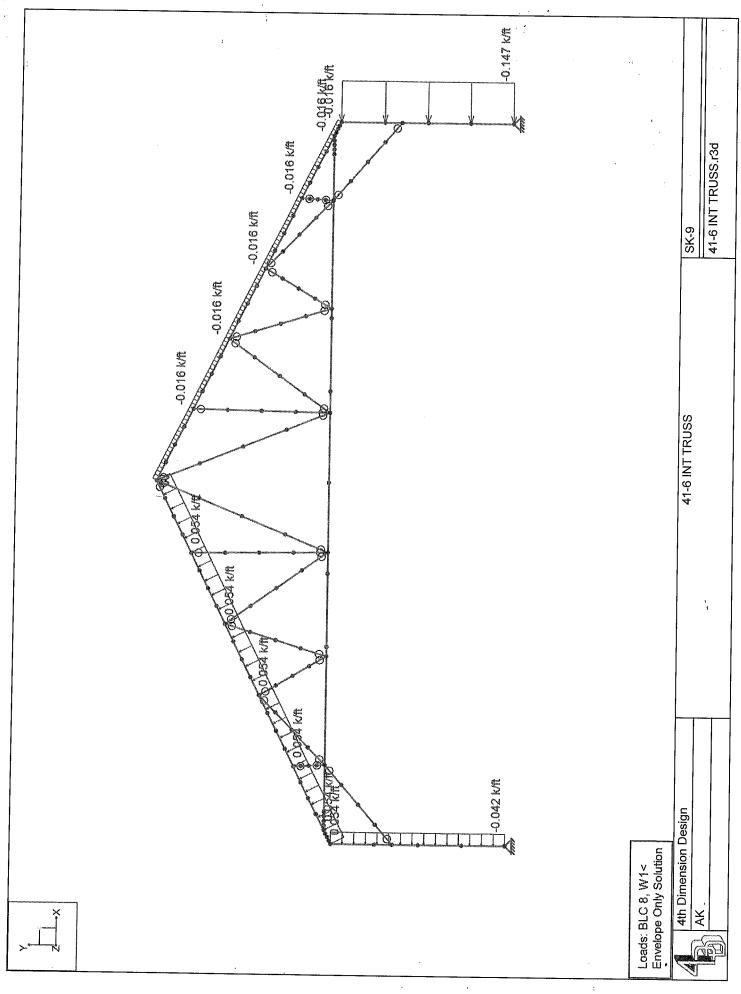


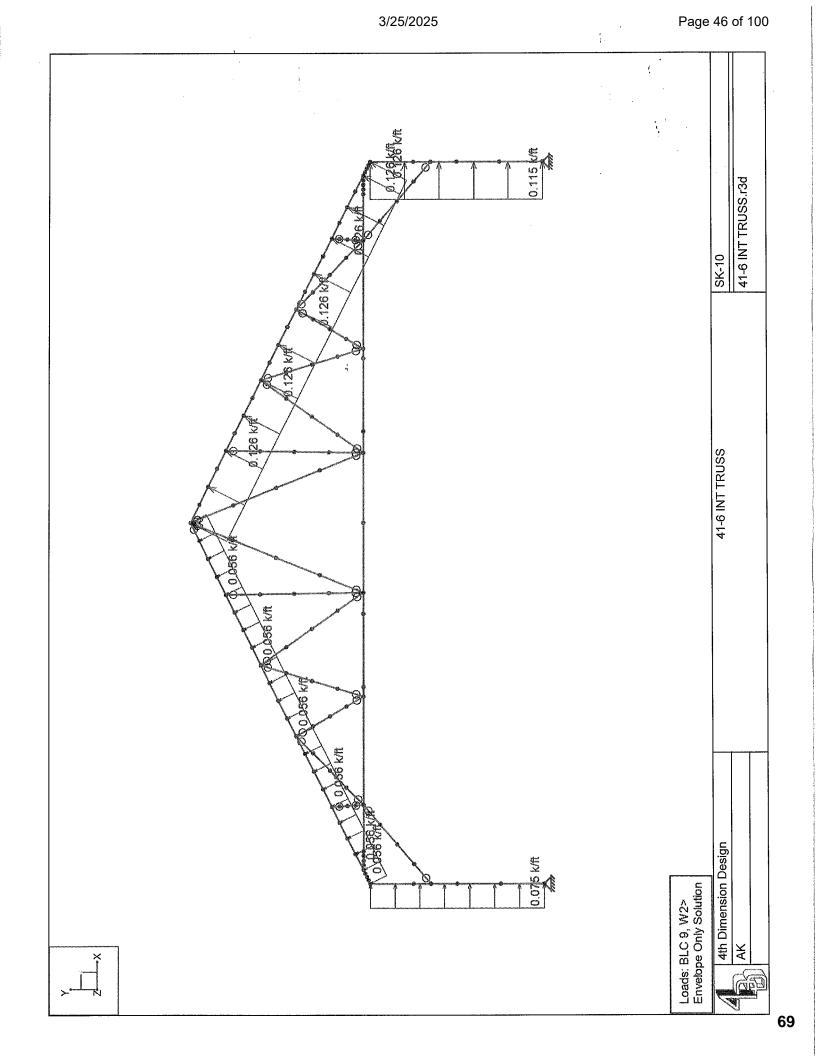


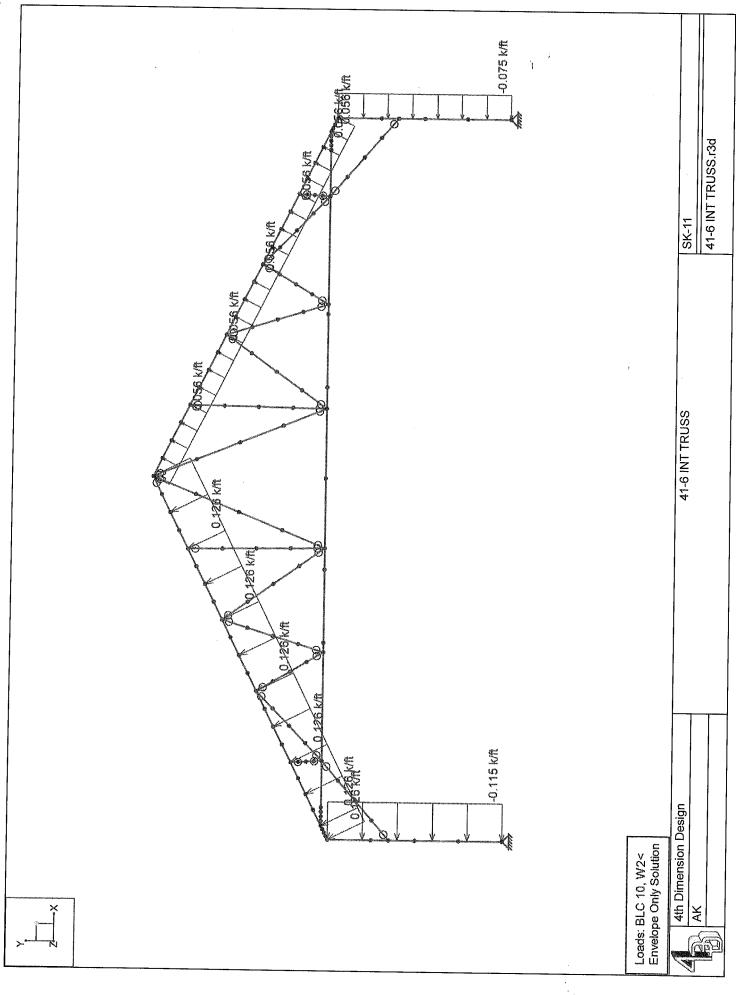

Page 42 of 100

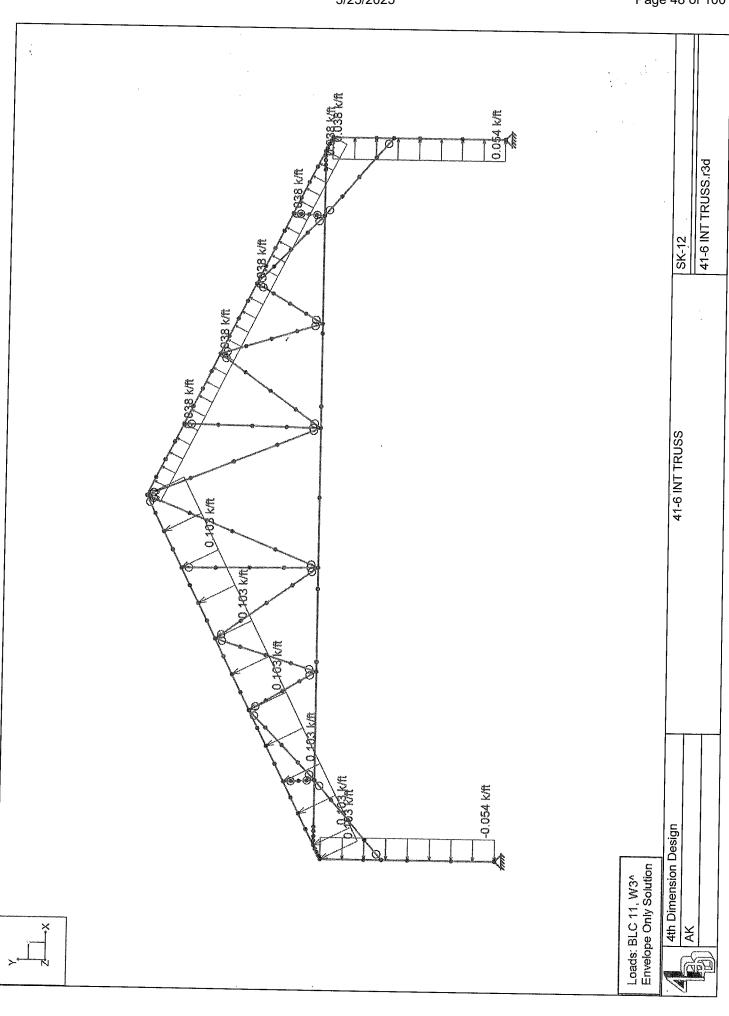
3/25/2025

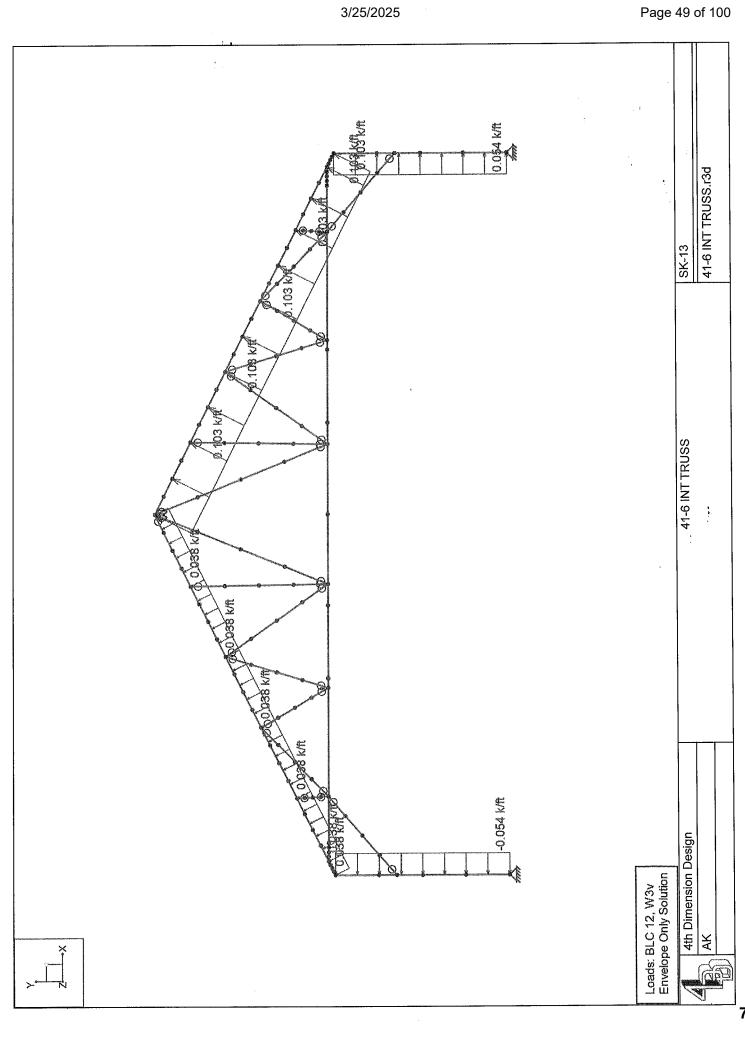
· · · ·

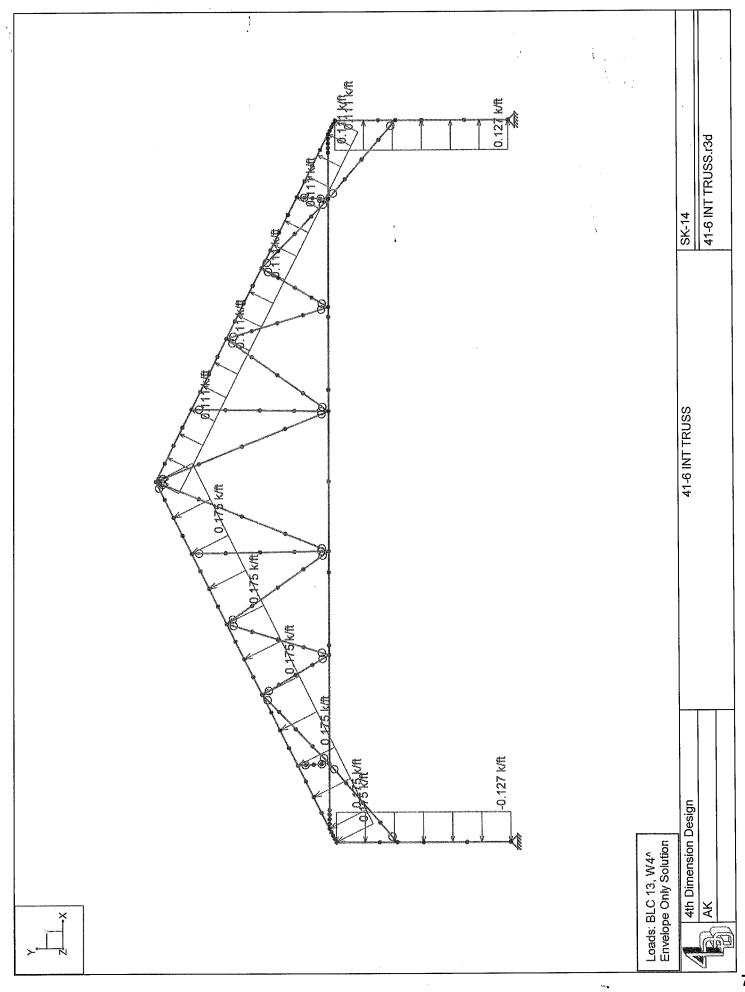


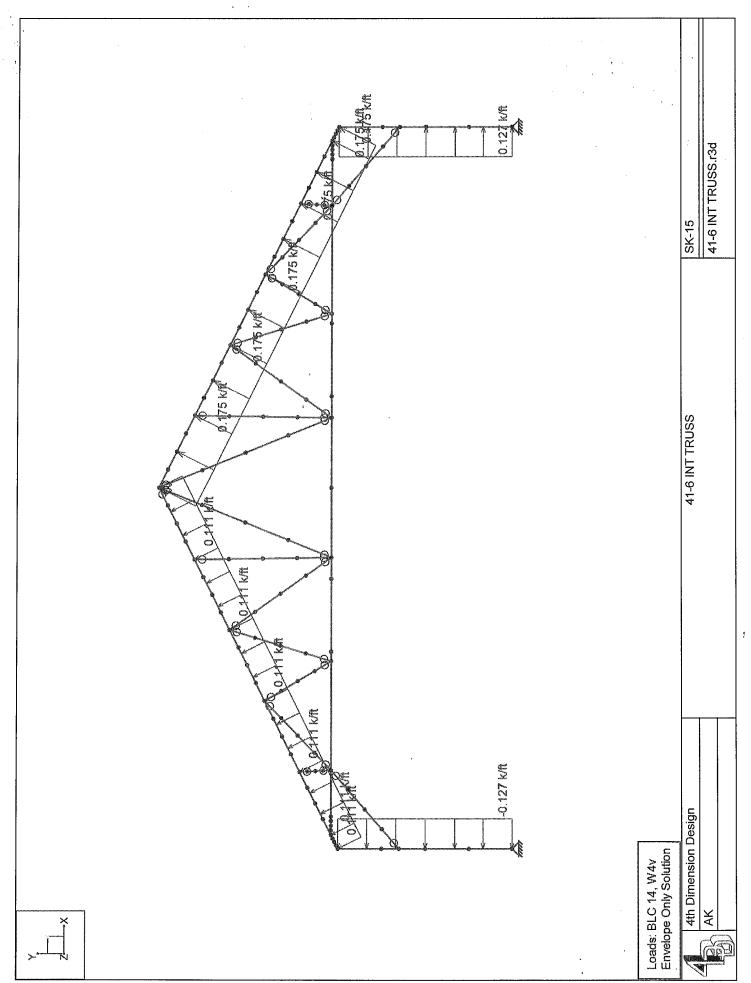

Page 44 of 100

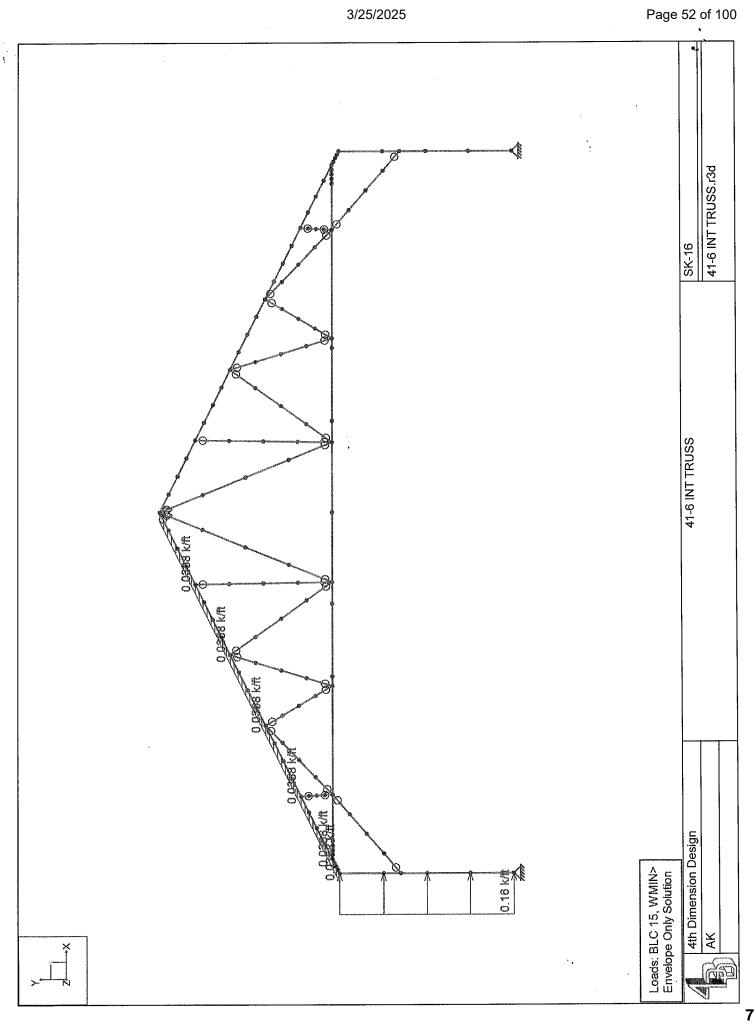

3/25/2025

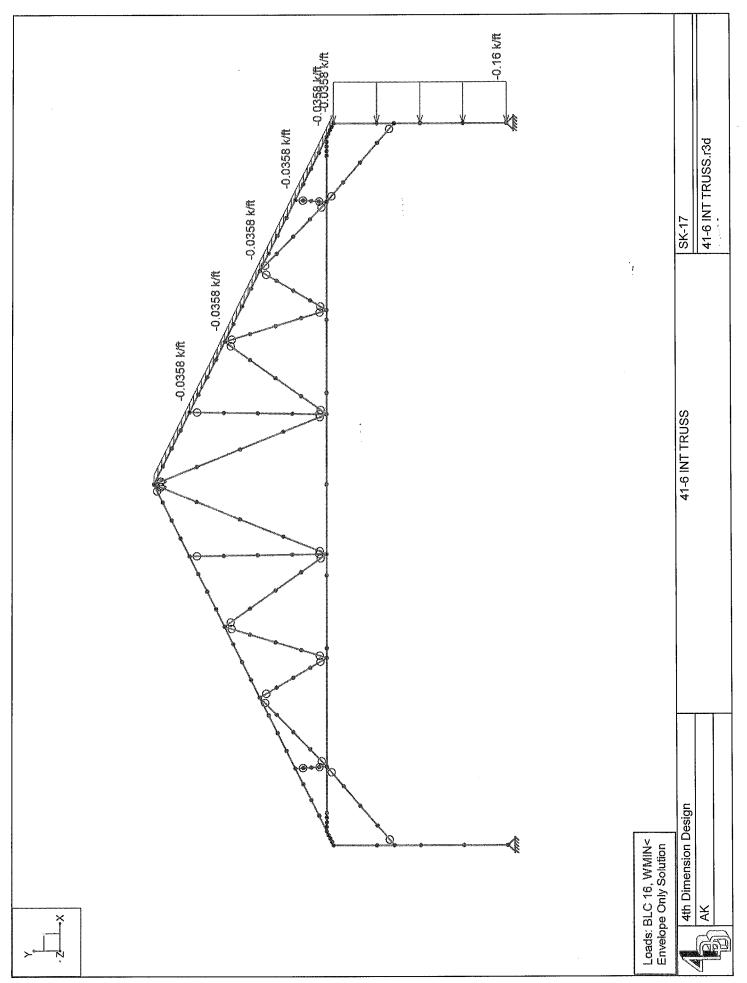

i'











۰,

,

Π

GAD

V

Load Combinations

																3/2	20/	20	/2、	,																		а	yc	54
Factor						-			•						0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45						
BLC															2	∞	6	10	11	12	13	14	15	16	7	ø	6	10	<u>,</u>	12	13	14	15	16						
Factor	1	1	-	-	0.6	0.6	0.6	0.6	0.6	0.6	0.0	0.6	0.6	0.6	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.6	0.6	0.6	0.6	0.6	0.6
BLC	e	4	с И	9	7	∞	თ	10	11	12	13	14	15	16	3	e	3	ო	ю	e	ო	e	e	ო	4	4	4	4	4	4	4	4	4	4	7	8	6	10	11	12
Factor	1	1	+	-	Ļ	-	۲-	-	L.	-	-	~	1	ļ	1	-	, ,	-	5	Ļ	~	-	1	Ļ	1	1	1	~	+	۲	+	۲	1	-	0.3	0.3	0.3	0.3	0.3	0.3
BLC	2	2	2	2	2	7	2	2	~	7	2	2	2	2	2	7	2	2	2	2	2	2	ุณ	2	2	2	2	2	2	2	~	2	2	2	2	2	2	2	2	2
Factor	4	1	-	-	<u>.</u>	-		-	-	-	-	-	1	ł	-	~		-	x-	٢		-		-	1	1	1	-	1	-	.4-	1	1	-	0.6	0.6	0.6	0.6	0.6	0.6
BLC	1	1	-	-		-	~	-	-	-	-	-	1	~	-	Ł	1	-		1	-	-	-	~	-	~	1	1	1	۰	1	1	1	1	1	4	1	-	1	1
P-Delta	۲	Y	7	≻	7	≻	Y	≻	X	7	7	~	<u>۲</u>	7	λ	≻	۲.	7	X	۲	7	۲	7	۲	>	≻	Y	۲	۲	٢	Y	≻	۸	≻	۲	Y	>	≻	Y	۲
Solve	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Description	D+C+Lr	D+C+S	D+C+SUL	D+C+SUR	D+C+0.6W1>	D+C+0.6W1<	D+C+0.6W2>	D+C+0.6W2<	D+C+0.6W3^	D+C+0.6W3v	D+C+0.6W4^	D+C+0.6W4v	D+C+0.6WMIN>	D+C+0.6WMIN<	D+C+.75Lr+.45W1>	D+C+.75Lr+.45W1<	D+C+.75Lr+.45W2>	D+C+.75Lr+.45W2<	D+C+.75Lr+.45W3^	D+C+.75Lr+.45W3v	D+C+.75Lr+.45W4^	D+C+.75Lr+.45W4v	D+C+.75Lr+.45WMIN>	D+C+.75Lr+.45WMIN<	D+C+.75S+.45W1>	D+C+.75S+.45W1<	D+C+.75S+.45W2>	D+C+.75S+.45W2<	D+C+.75S+.45W3^	D+C+.75S+.45W3v	D+C+.75S+.45W4^	D+C+.75S+.45W4v	D+C+.75S+.45WMIN>	D+C+.75S+.45WMIN<	0.6D+0.3C+0.6W1>	0.6D+0.3C+0.6W1<	0.6D+0.3C+0.6W2>	0.6D+0.3C+0.6W2<	0.6D+0.3C+0.6W3^	0.6D+0.3C+0.6W3v
	F	2		4	S	ဖ	7	∞	ი	10	÷	12	13	4	15	16	17	18	6	20	2	22	23	24	25	26	27	28	29	30	3	32	33	34	35.	98	22	38	39	40

3/25/2025

Page 1

[41-6 INT TRUSS.r3d]

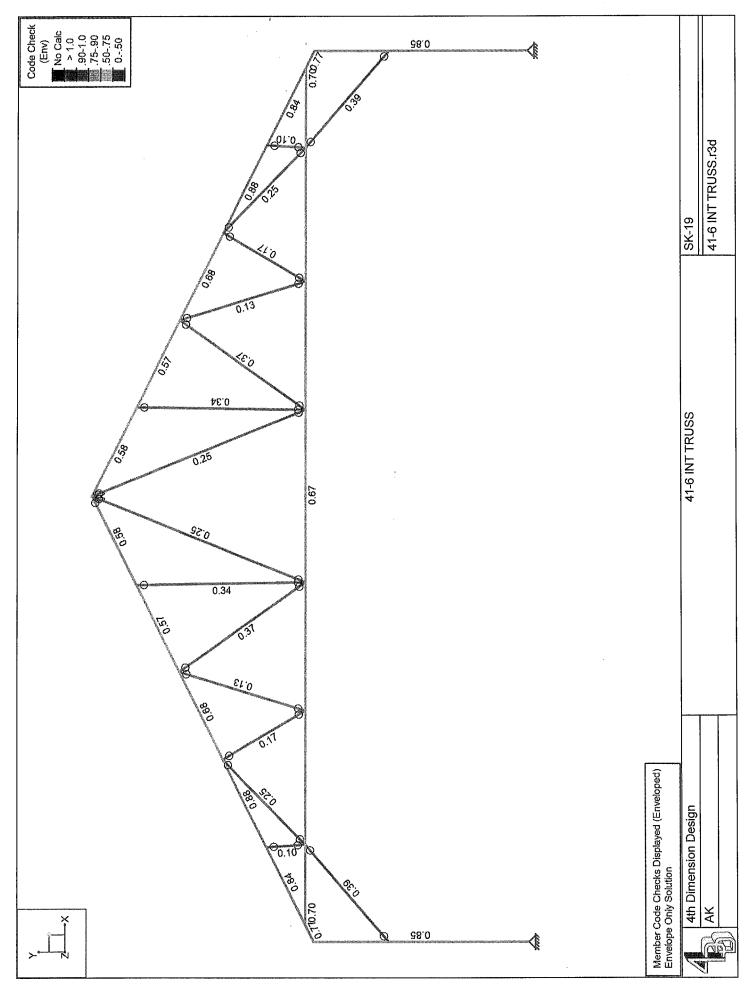
77

RISA-3D Version 22

ر آ

 \mathcal{B}

۲


I

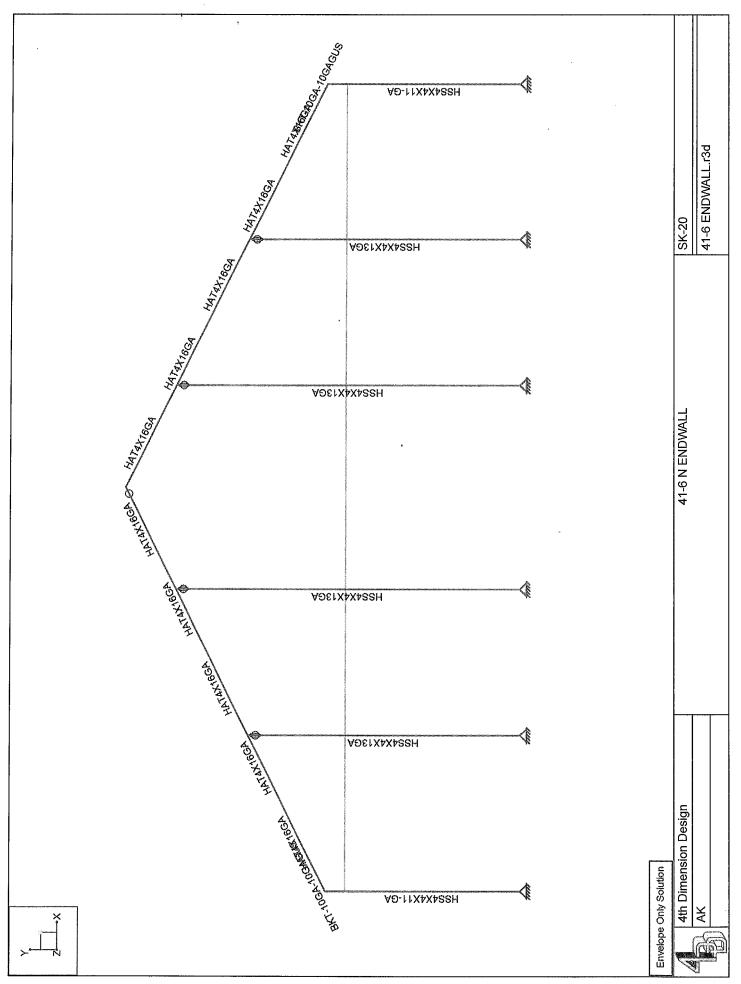
Load Combinations (Continued)

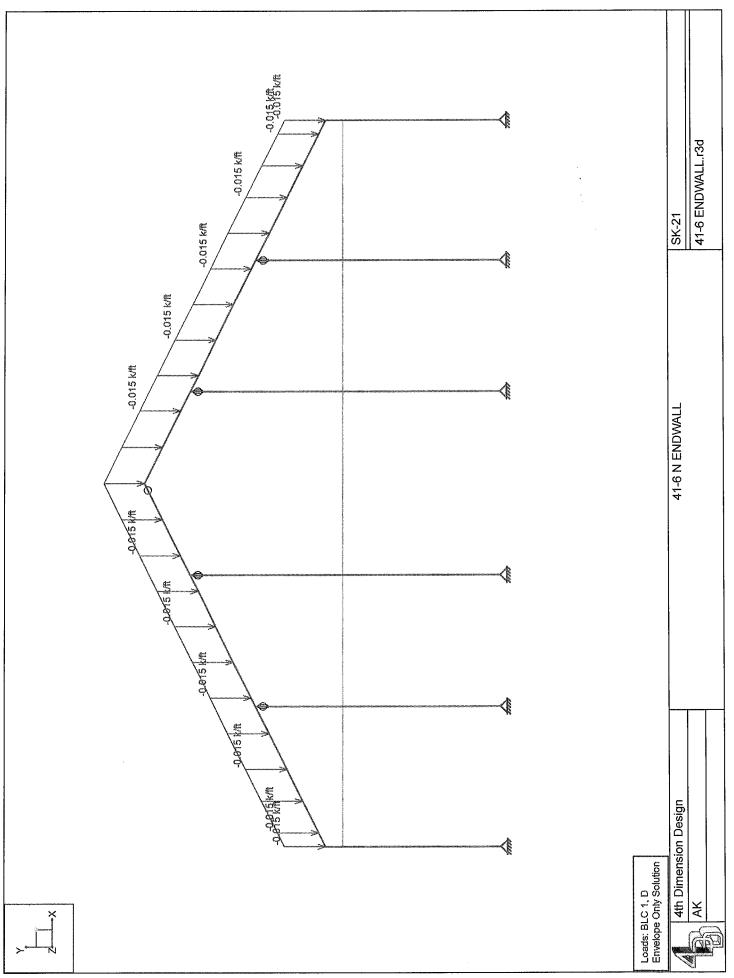
; ;

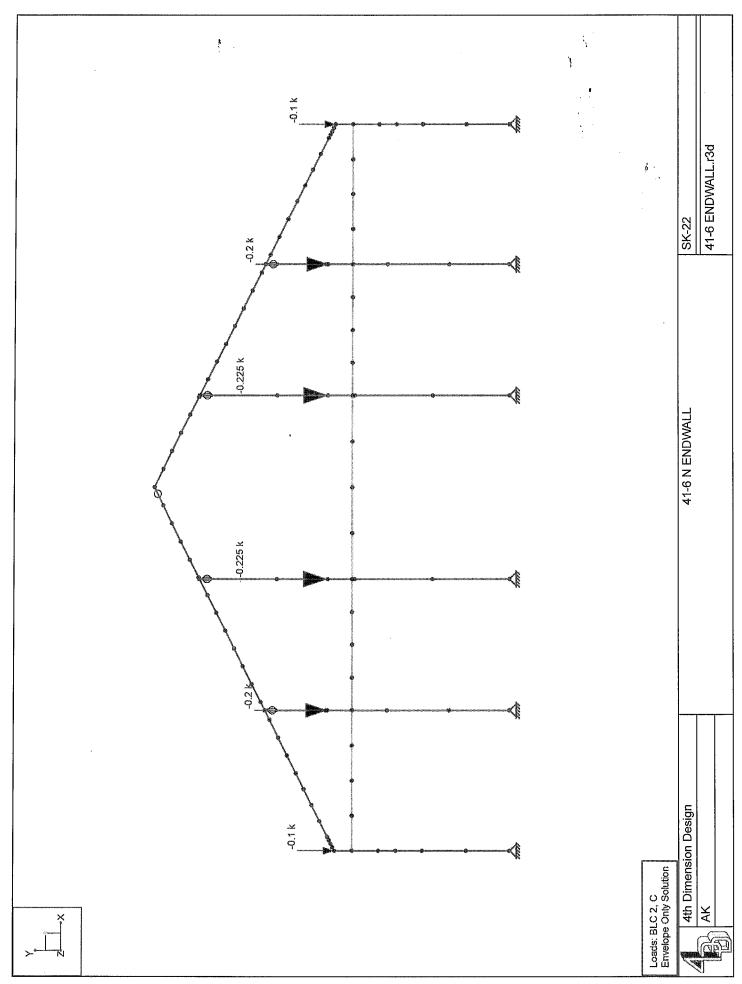
olve P-Delta BLC Factor BLC Factor BLC Factor BLC Factor	Yes Y 1 1 0.6 2 0.3 1 13 0.6 1 2 0.0	Yes Y 1 0.6 2 0.3 14 0.6	Yes Y 1 1 0.6 2 0.3 0.3 0.5 0.5 0.5 0.5 0.3 0.6	Yes Y 1 1 0.6 2 0.3 16 0.6
BLC	2	2	2	2
Factor	0.6	0.6		0.6
BLC	1	1	1	-
P-Delta	۲ ا		Υ.	>
Solve	Yes	Yes	Yes	Yes
Description	0.6D+0.3C+0.6W4^	0.6D+0.3C+0.6W4v	0.6D+0.3C+0.6WMIN>	0.6D+0.3C+0.6WMIN<
	1	2	3	4

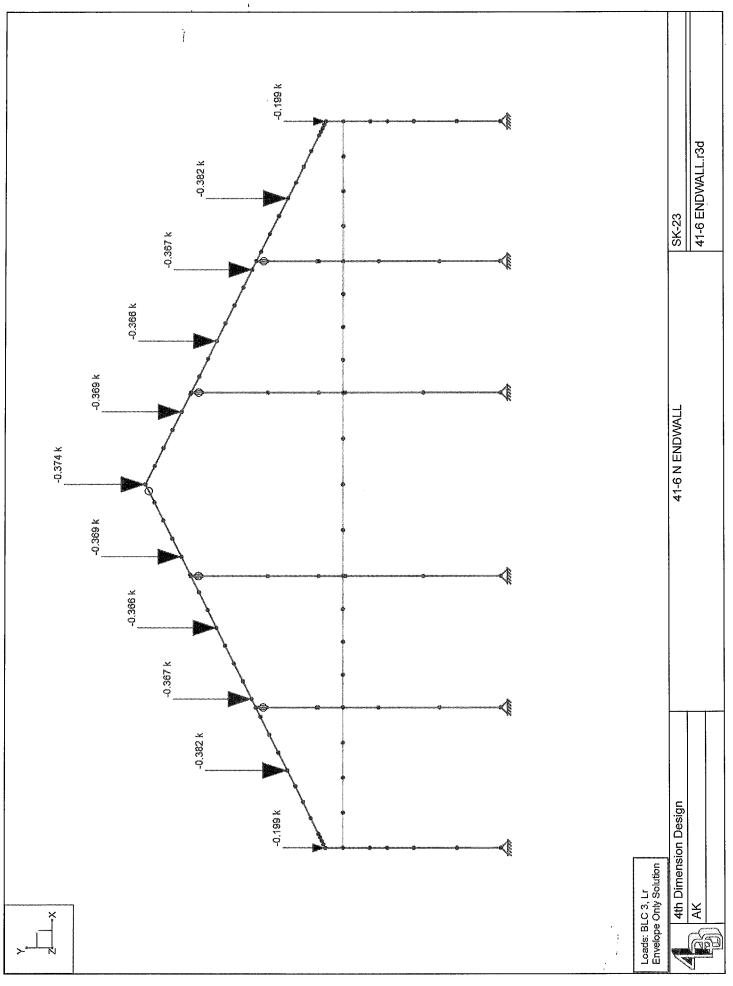
n T Page 2

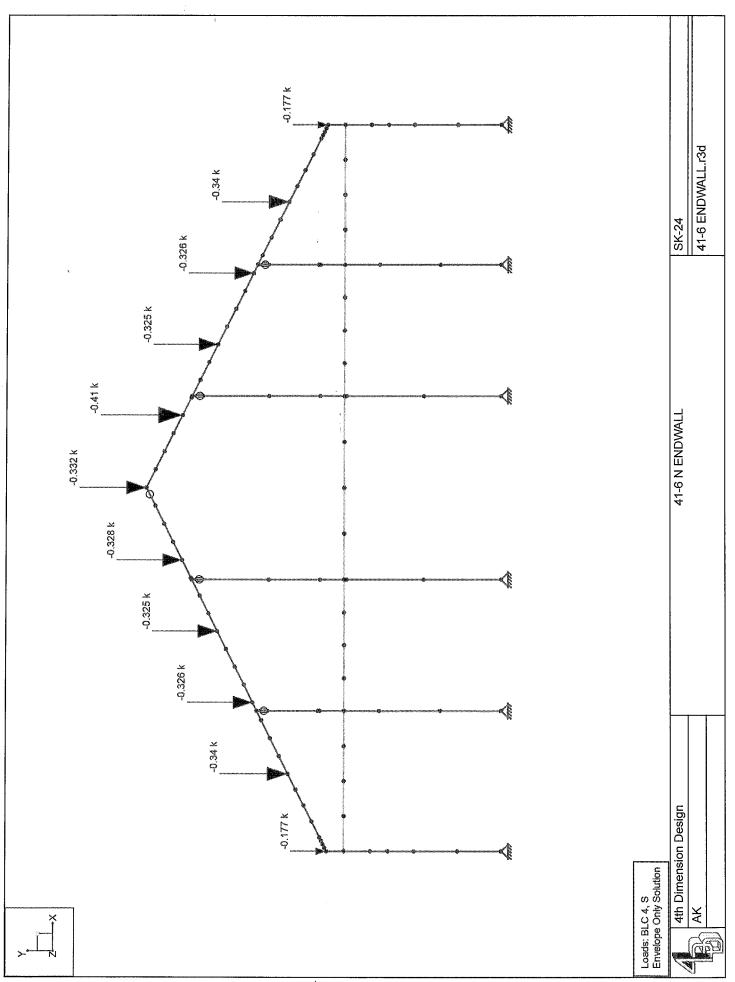
dad

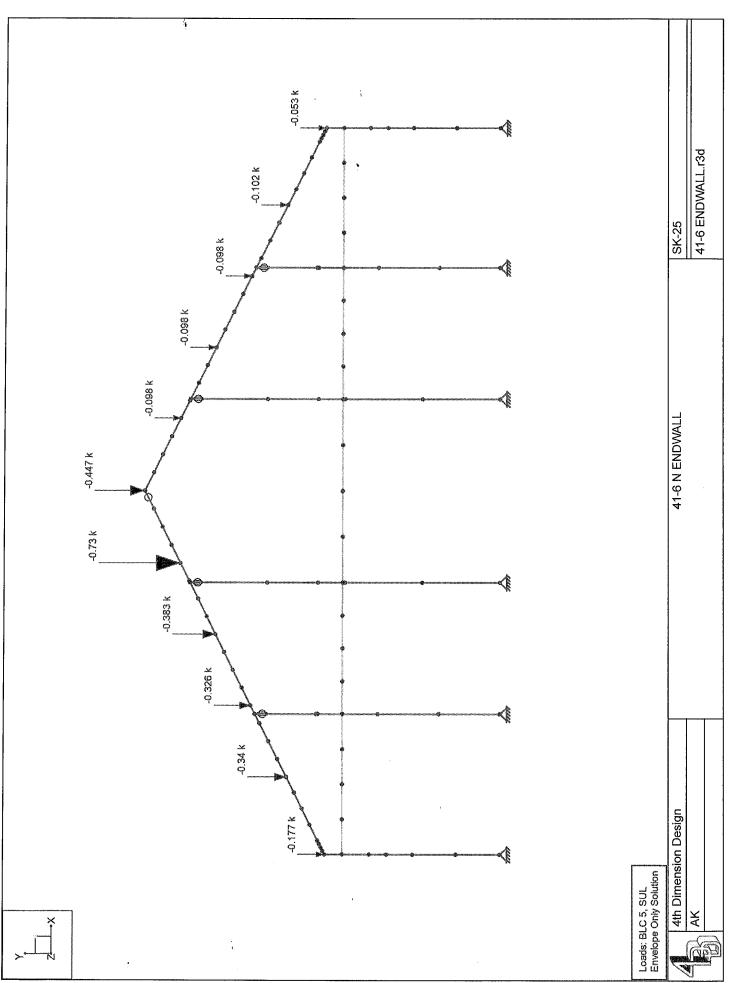

Envelope AISC 14th (360-10); ASD Steel Code Checks

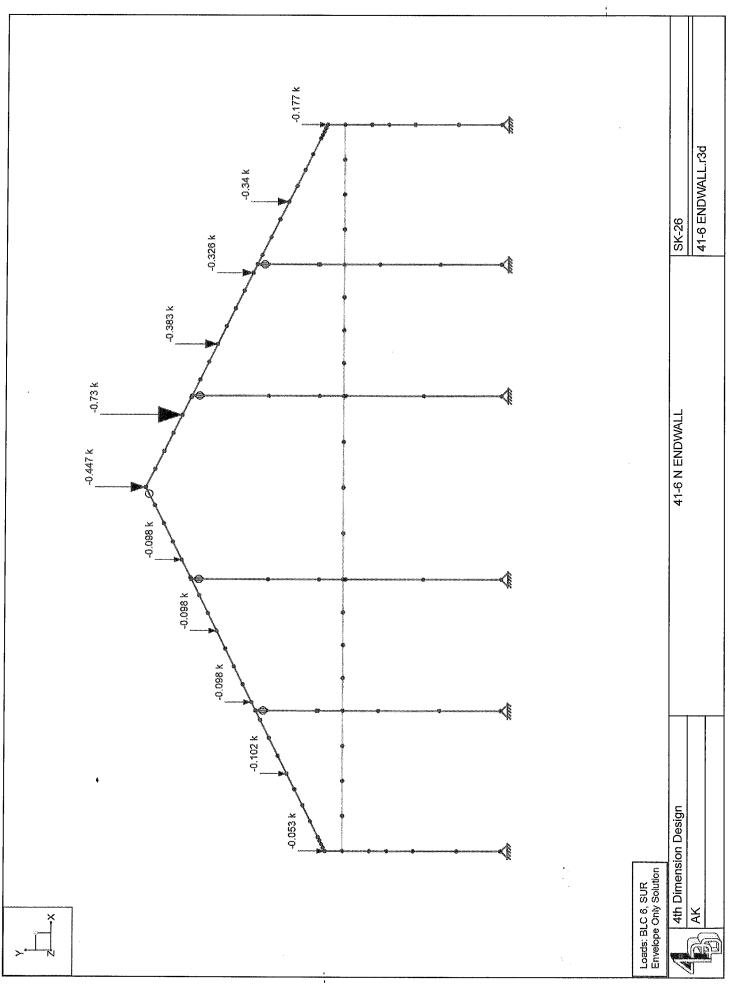

Ean	H1-1h	H1-1a	H1-13	H1-1a	H1-13	H1-1a	H1-1b	H1-1a	H1-13	H1-1a	H1-1a	H1-1a	H1-1a	H1-1a	H1-1a	H1-1a	H1-1b*	-11-1b*	H1-1a	H1-1a	-11-1b*	H1-1b*	-11-1b*		H1-1a	H1-1a	-11-1a*	.148 H1-1a*	H1-1b	H1-1b	H1-1a	H1-1a	H1-1a
පි	9 133	8	12877		1 229 H1-1a	1.114 H1-1a	2 133	8	- 2300		10000		1	~	1.148		1.14	1.14 H1-1b*	1.145 H1-1a	1.145 H1-1a	1.142 H1-1b	1.142 F	1.136 H1-1b*	1.136 H1-1b*	1.149	1.149	1.148 H1-1a*	1.148 F	1.345	1.345	1.146	1.146	1.774
Mnzz/om [k-ft]	3 463	2.425	1.861	1.861	1.861	1.861	3.463	2.425	1.861	1.861	1.861	1.861	0.916	0.916	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	7.085	7.085	1.352	1.352	1.352
Mnyy/om [k-ft]	0.344	1.739	1.213	1.213	1.213	1.213	0.344	1.739	1.213	1.213	1.213	1.213	0.916	0.916	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	0.723	7.085	7.085	1.352	1.352	1.352
Pnt/om [k]	34.461	37.725	21.347	21.347	21.347	21.347	34.461	37.725	21.347	21.347	21.347	21.347	21.329	21.329	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	13.263	66.913	66.913	22.754	22.754	22.754
Pnc/om [k]	21.535	30.933	14.105	14.105	14.124	14.036	21.535	30.933	14.105	14.105	14.124	14.036	9.264	9.264	7.313	7.313	12.556	12.556	7.973	7.973	9.505	9.505	7.047	7.047	5.558	5.558	4.658	4.658	40.46	40.46	4.135	4.135	2.127
ГC	<u>ო</u>	ო	41	41	41	41	4	4	42	42	42	42	3	4	9	5	8	7	9	5	25	26	8	7	3	4	3	4	S	9	12	11	8
Dir	>	>	γ	>	>	y	`^	٧	Λ	>	A	y	y	λ	۸	V	۱ v	V	λ	`	ý	y	٨	λ	Y	>	λ	>	٧	, v	۸	`	y
Loc[ft]	0	4.041	4.554	0	4.53	0	0	4.041	4.554	0	4.53	0	0.258	0.805	0	0	1.811	1.811	0	0	0	0	0	0	0	0	0	0	10	10	0	0	14.888
Shear Check	0.366	0.032	0.028	0.026	0.026	0.031	0.366	0.032	0.028	0.026	0.026	0.031	0.017	0.017	0.001	0.001	0	0	0.001	0.001	0	0	0	0	0.001	0.001	0	0	0.084	0.084	0.001	0.001	0.034
LC	25	ო	3	3	3	ო	26	4	4	4	4	4	3	4	14	13	3	4	36	35	25	26	25	26	3	4	e	4	26	25	42	41	38
Loc[ft]	0	0	1.518	1.932	2.929	1.92	0	0	1.518	1.932	2.929	1.92	0	1.063	2.954	2.954	0	0	2.731	2.731	0	0	6.15	6.15	3.57	3.57	0	0	6.465	6.465	4.999	4.999	2.672
Code Check	0.769	0.838	0.878	0.675	0.569	0.584	0.769	0.838	0.878	0.675	0.569	0.584	0.7	0.7	0.389	0.389	0.095	0.095	0.253	0.253	0.166	0.166	0.133	0.133	0.367	0.367	0.342	0.342	0.854	0.854	0.25	0.25	0.67
Shape	BKT-10GA-10GAGUS	HAT4X16GA-TS2X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	BKT-10GA-10GAGUS	HAT4X16GA-TS2X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HSS1.5X1.5X10-GA	HSS1.5X1.5X10-GA	HSS2X2X16GA	HSS2X2X16GA	HSS2X2X16GA	HSS2X2X16GA	HSS2X2X16GA	HSS2X2X16GA	HSS4X4X11-GA	HSS4X4X11-GA	HSS2X2X12-GA	HSS2X2X12-GA	HSS2X2X12-GA								
Member	1 M29	2 M16	3 M5		5 M1	_	7 M24		9 M32	10 M31	11 M30		13 M3	14 M23	15 M28			18 M22	19 M19		21 M11	22 M10	23 M14	24 M13	25 M27	26 M21	27 M26	28 M20	29 M8	30 M33	31 M12	32 M25	33 M46

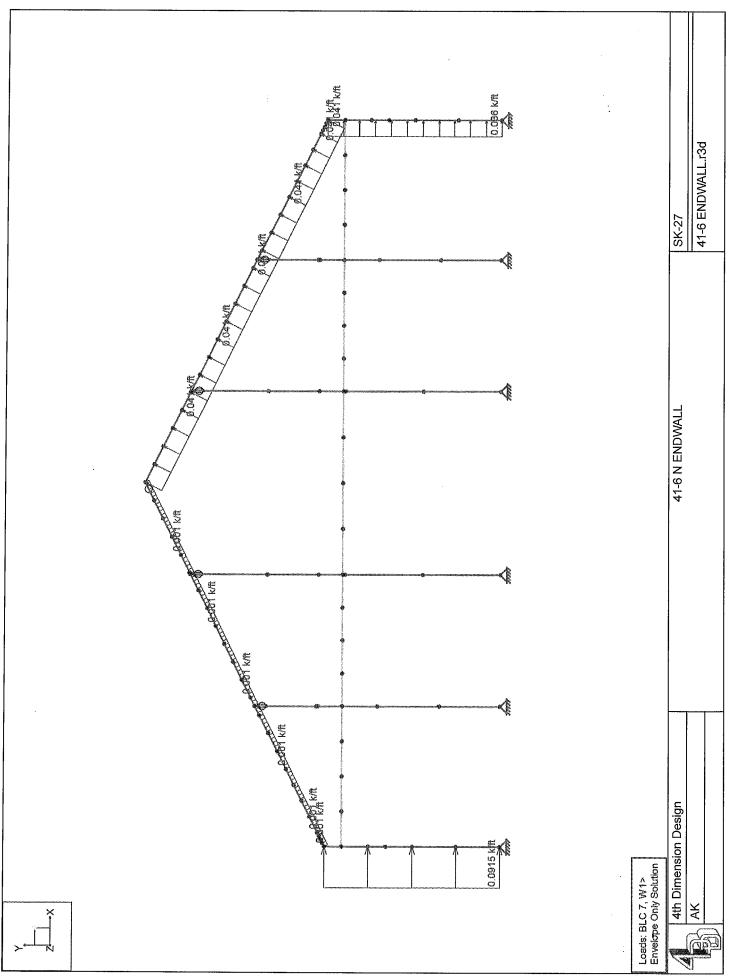

3/25/2025

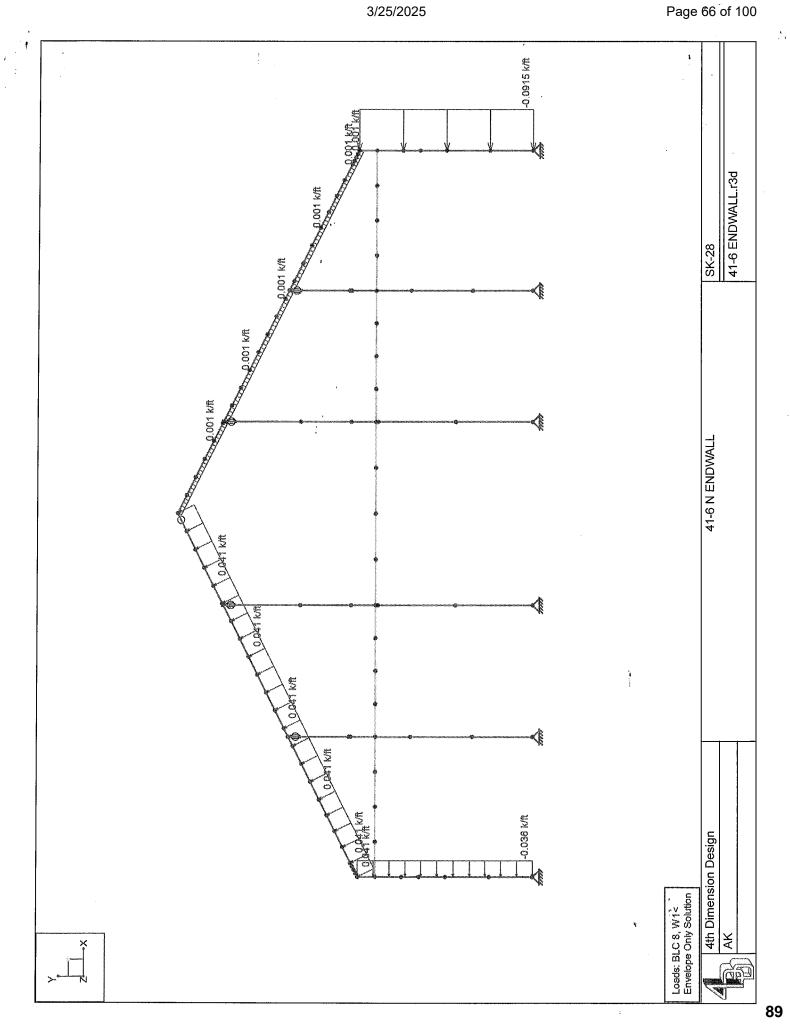

Page 1

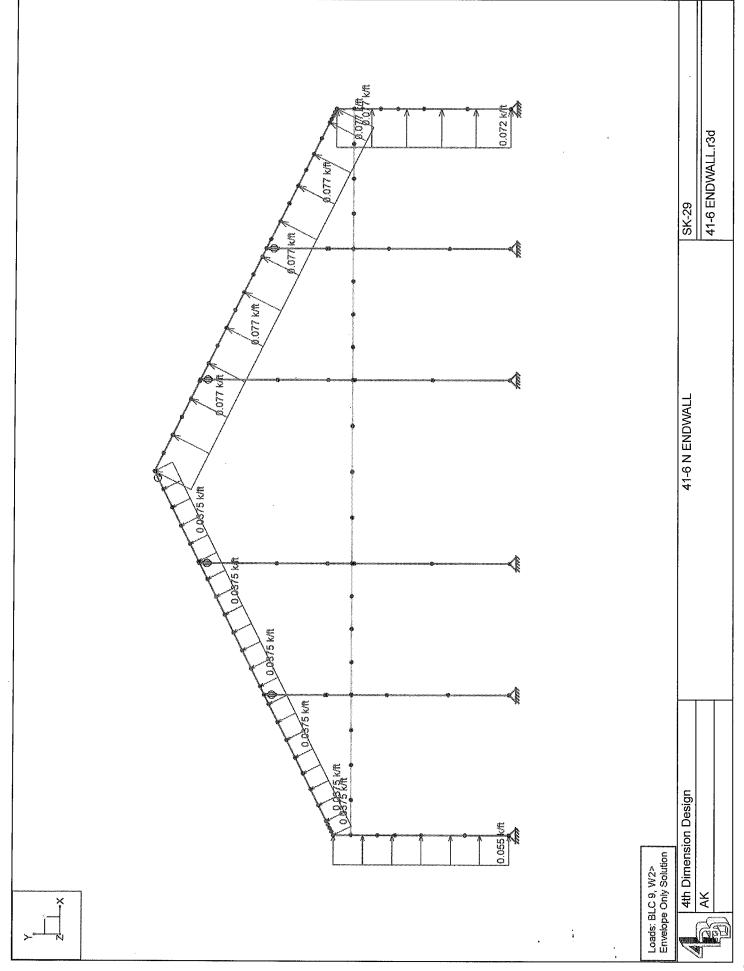

RISA-3D Version 22

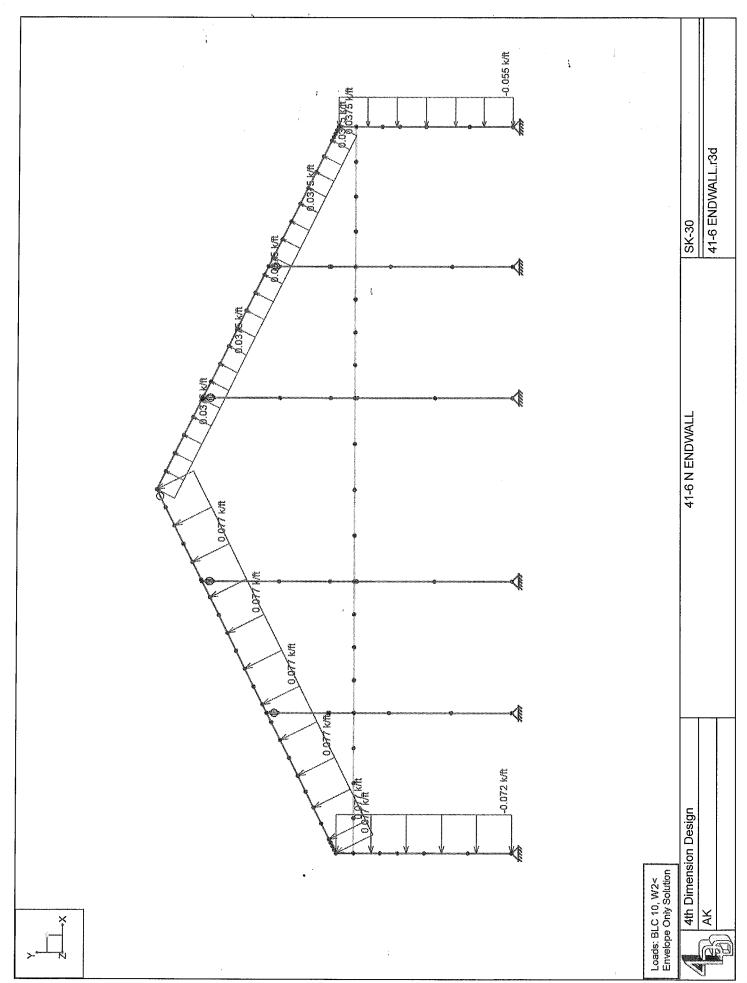


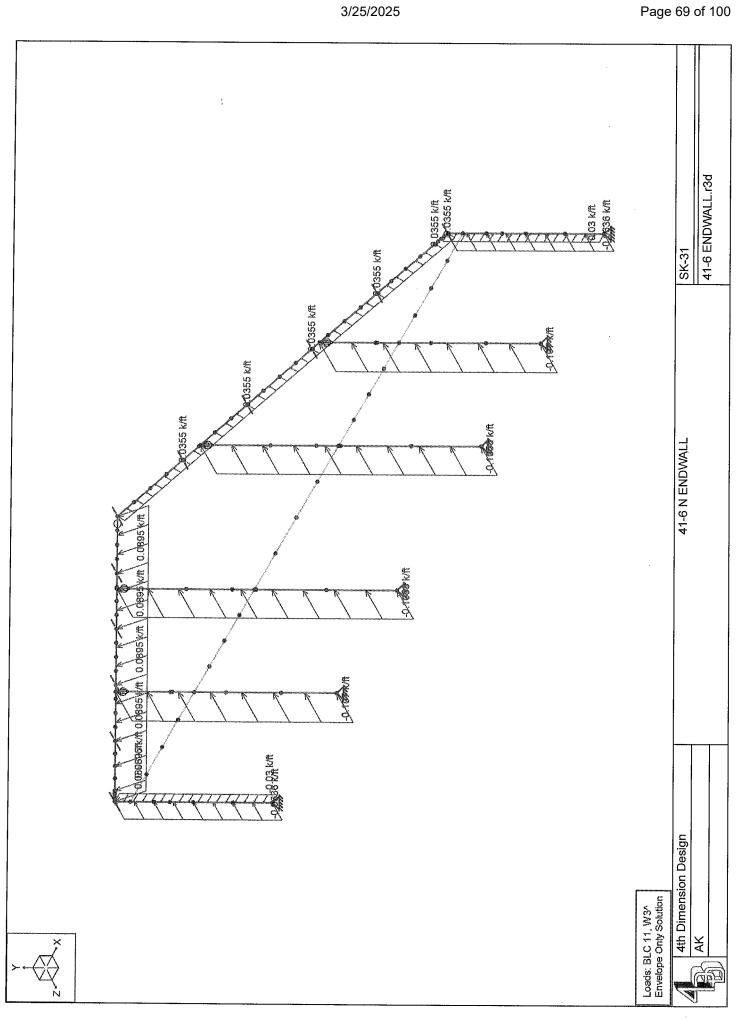


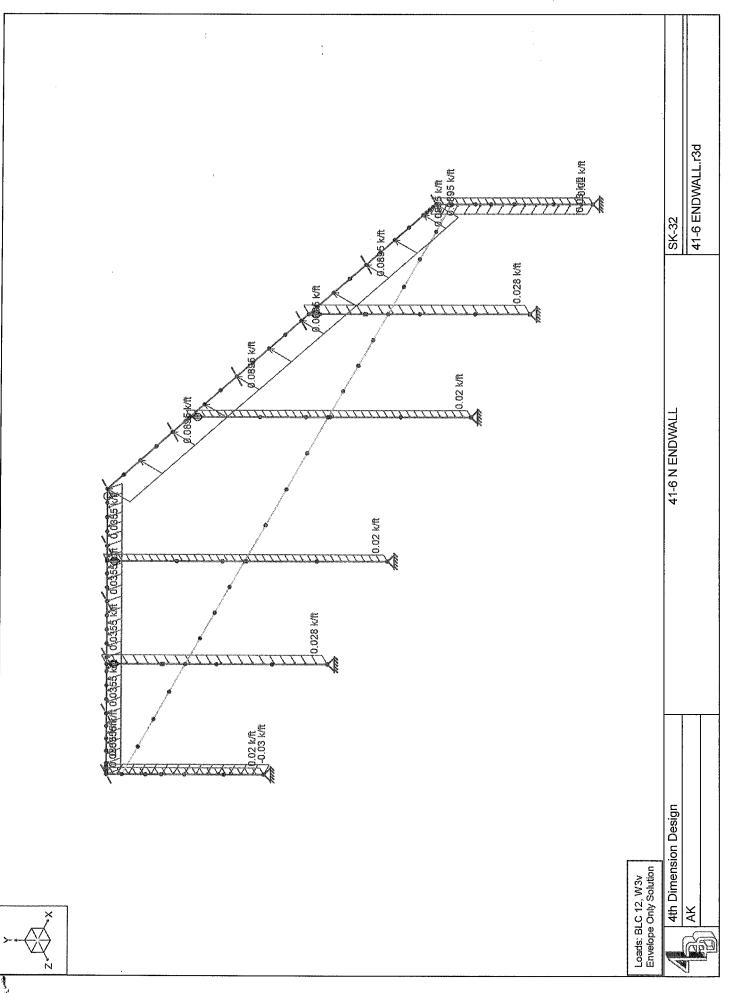


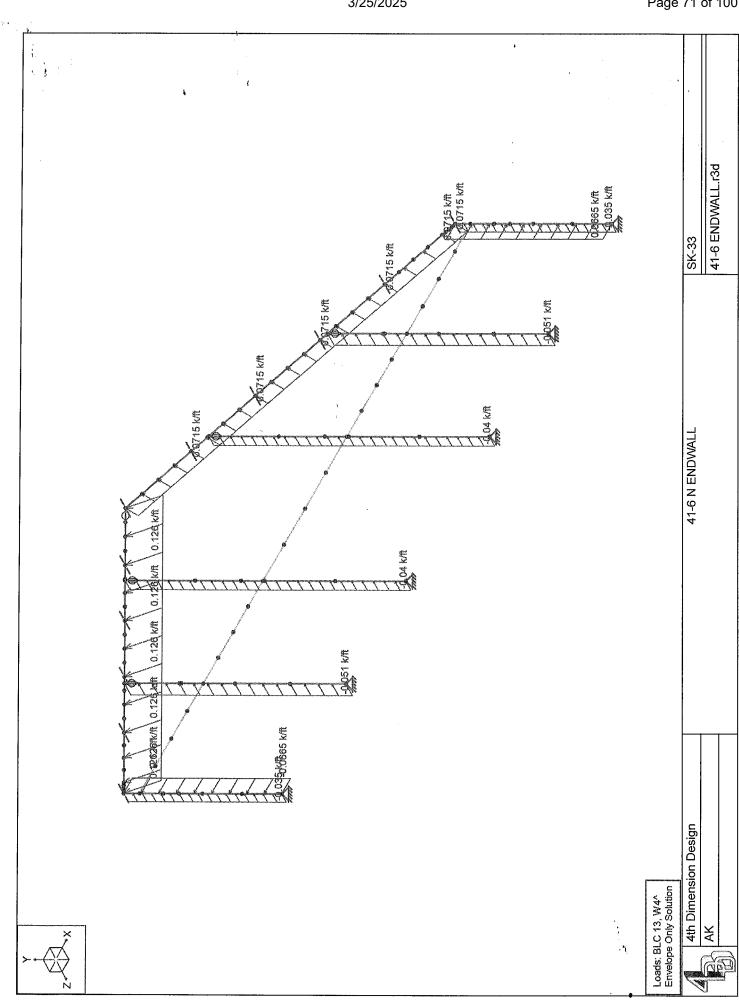


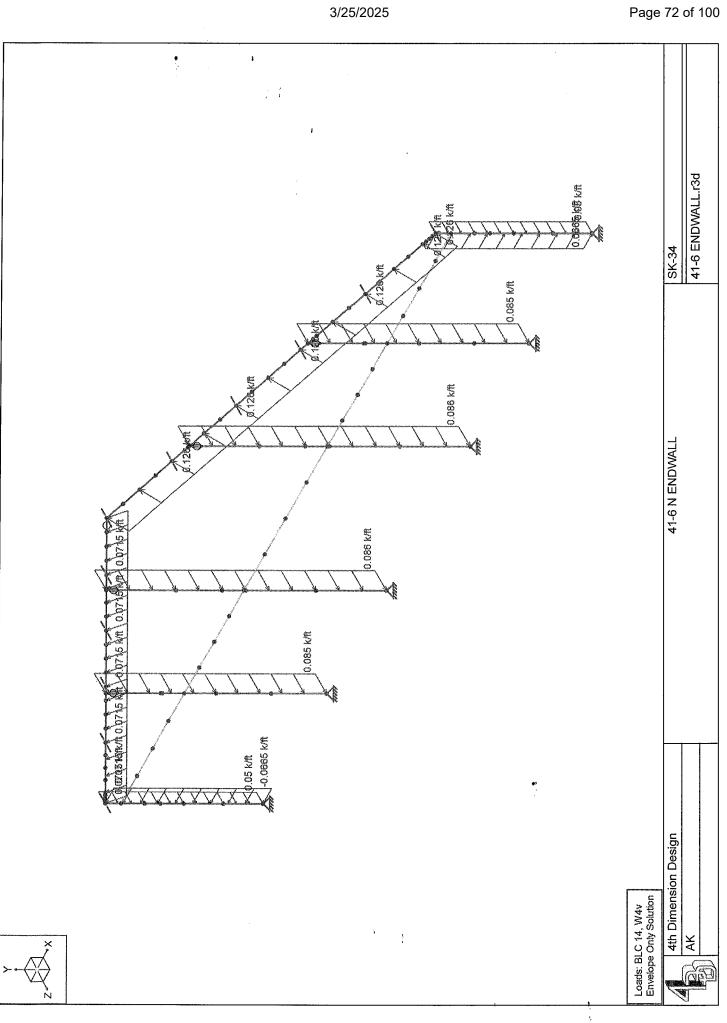


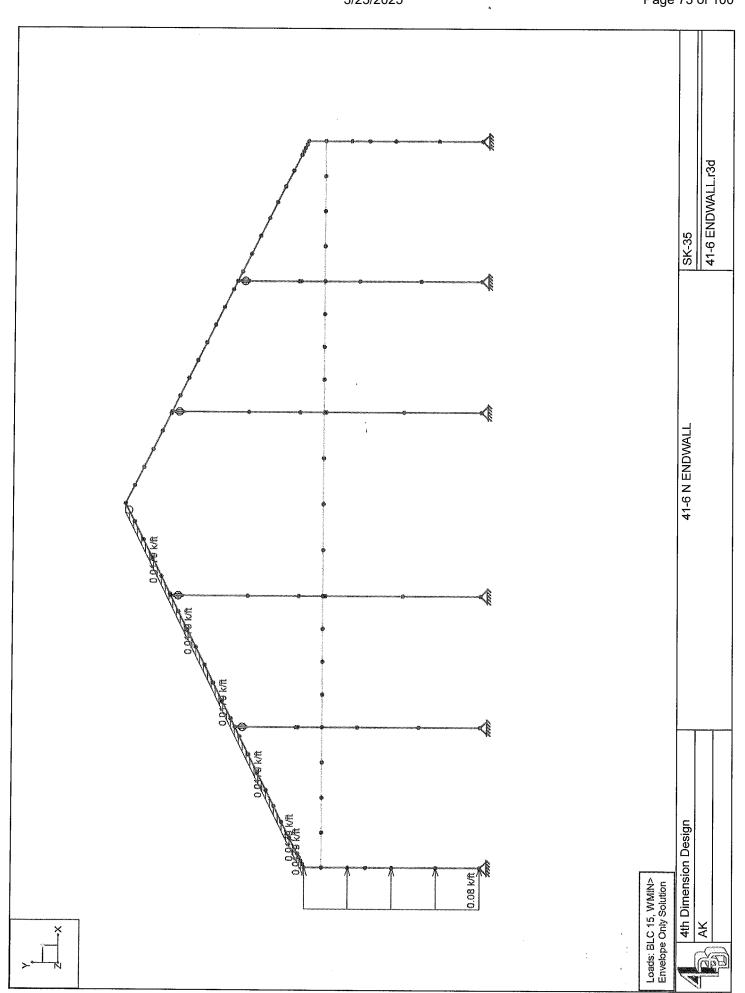


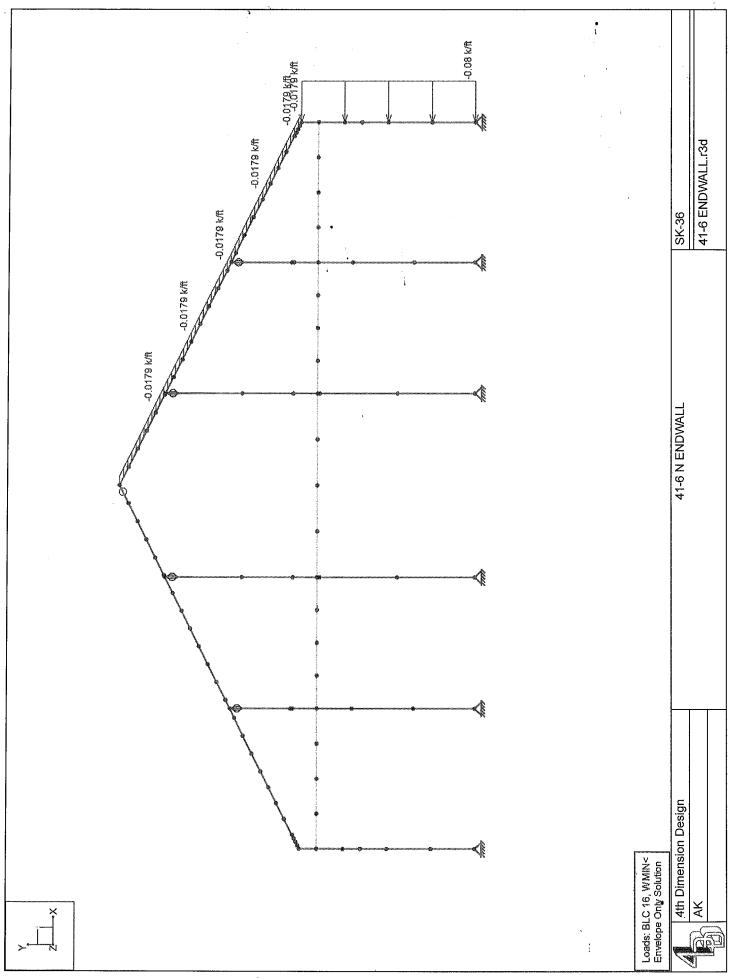











Page 71 of 100

ì

.

Factor

EGN

Load Combinations

ε 4 20

2

Description	D+C+Lr	D+C+S	D+C+SU(L)	D+C+SUR	D+C+0.6W1>	D+C+0.6W1<	D+C+0.6W2>	D+C+0.6W2<	D+C+0.6W3^	D+C+0.6W3v	D+C+0.6W4^	D+C+0.6W4v	D+C+0.6WMIN>	D+C+0.6WMIN<	D+C+0.6WMIN^	D+C+.75Lr+.45W1>	D+C+.75Lr+.45W1<	D+C+.75Lr+.45W2>	D+C+.75Lr+.45W2<	D+C+.75Lr+.45W3^	D+C+.75Lr+.45W3v	
Solve	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
P-Delta	Υ -	Y	×	7	λ	Y	λ	7		Y	<u> </u>	Y	ل × ا	Y	<u> </u>	۲	۲	Y	Υ	۲	>	
BLC	1	-	-	+	-	٠.	~	٢	1	1	1	1	1	+	1	1	1	1	1	1	د	-
Factor	1	-		-	-	1	1	~	1	1	1	1		-	1	1	1	-	1	1	-	
BLC	2	2	2	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	8	
Factor	ر	-	-	-	~	-	-	-	1	-	1	-	1	-	1	-	1	~	1	1	~	,
BLC	ო	4	5	9	7	∞	თ	10	11	12	13	14	15	16	17	e	3	ო	3	3	ო	
Factor	4	-	F	-	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.75	0.75	0.75	0.75	0.75	0.75	
BLC															·	7	ω	6	10	11	12	

3/25/2025

0.45 0.45 0.45

0.45 0.45 0.45 0.45 0.45

0.45 0.45 0.45 0.45 0.45

2 ထတ

2 2 2 2 2 2 2

Yes Yes Yes Yes Yes Yes

Yes Yes Yes

Yes

0.6D+0.3C+0.6W2>

Yes

D+C+.75S+.45WMIN> D+C+.75S+.45WMIN< D+C+.75S+.45WMIN^ 0.6D+0.3C+0.6W1> 0.6D+0.3C+0.6W1<

D+C+.75S+.45W4v

Yes

D+C+.75S+.45W2> D+C+.75S+.45W2> D+C+.75S+.45W2< D+C+.75S+.45W3^ D+C+.75S+.45W3^ D+C+.75S+.45W4^

2 2

15

t 2

ကက ကက က 4 4 4 4 4 4 4 4 4 4 ヤ

NN

Yes Yes Yes Yes Yes Yes

D+C+.75Lr+.45W4^ D+C+.75Lr+.45W4v D+C+.75Lr+.45WMIN>

15 15 17 17

18

0

Ţ

ω 6

~

12

D+C+.75Lr+.45WMIN< D+C+.75Lr+.45WMIN^

D+C+.75S+.45W1> D+C+.75S+.45W1<

Yes

2 9 N 3 0.45

0.45 0.45 0.45

0.45 0.45 0.45 0.45

0.75

2

0.75 0.6 0.6 0.6

σ.

8

0.3 0.3

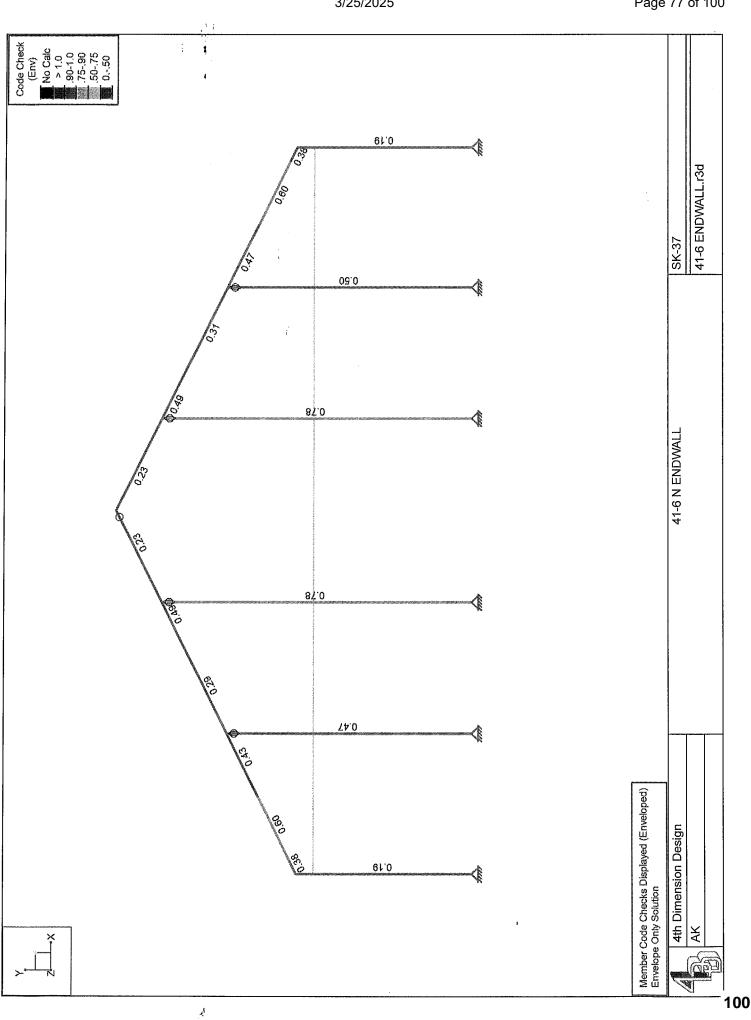
N

0.0 0.0 0.6

2

3

Page 75 of 100


Page 1

RISA-3D Version 22

[41-6 ENDWALL.r3d]

BLC Factor								
Factor	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
BLC	10	11	12	13	14	15	16	17
Factor	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
BLC	2	2	2	2	2	2	2	2
Factor	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
BLC	L I	1	1	1	1	1	1	~
P-Delta	Y	٢	Y	≻	Υ	۲	Y	7
Solve	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Description	0.6D+0.3C+0.6W2<	0.6D+0.3C+0.6W3^	0.6D+0.3C+0.6W3v	0.6D+0.3C+0.6W4^	0.6D+0.3C+0.6W4v	0.6D+0.3C+0.6WMIN>	0.6D+0.3C+0.6WMIN<	0.6D+0.3C+0.6WMIN^
	41	42	43	44	45	46	47	48

Page 2

3/25/2025

GgD

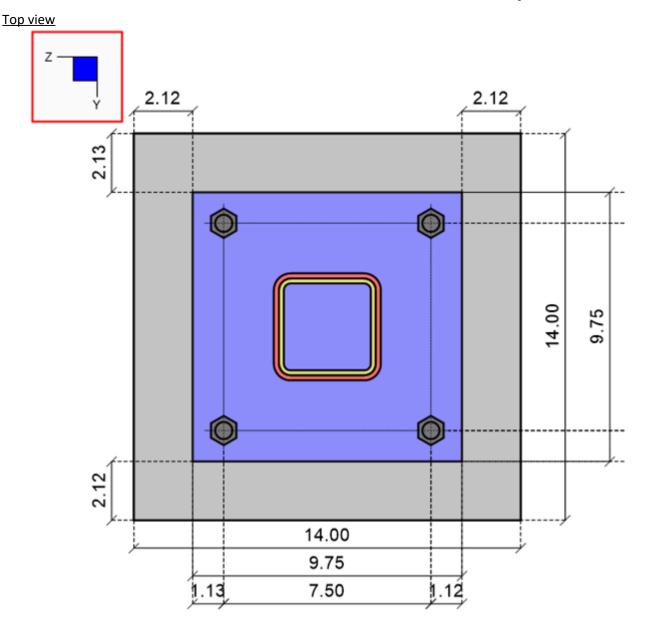
																		-
ц Ш	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-16	H1-16 ⁻	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b	H1-1b
ප	1.068 H1-1b	1.588 H1-1b	2.143 H1-1b	2.693	1.66		1.068 H1-1b	1.588 H1-16	2.143	2.693	1.66	1.199	2.42 H1-1b	2.42	1.399	1.326	1.326	1.41
Mnzz/om [k-ft]	3.463	1.861	1.861	1.861	1.861	1.861	3.463	1.861	1.861	1.861	1.861	1.861	7.085	7.085	4.602	4.602	4.602	4.602
Mnyy/om [k-ft]	0.344	1.213	1.213	1.213	1.213	1.213	0.344	1.213	1.213	1.213	1.213	1.213	7.085	7.085	4.602	4.602	4.602	4.602
Pnt/om [k]	34.461	21.347	21.347	21.347	21.347	21.347	34.461	21.347	21.347	21.347	21.347	21.347	66.913	66.913	49.089	49.089	49.089	49.089
Pnc/om [k] Pnt/om [k]	21.535	14.518	14.105	14.105	14.124	14.036	21.535	14.518	14.105	14.105	14.124	14.036	40.46	40.46	18.087	- 11.556	11.556	18.087
Ľ	25	25	1	44	15	44	24	24	15	45	15	45	19	18	15	15 -	15	15
Dir	7	y	Z	۸	Z	Y	γ	Ň	Z	Y	Z	λ	γ	`	Z	N	N	м
Loc[ft]	0	0	4.554	0	4.53	4.635	0	0	4.554	0	4.53	4.635	9.091	9.091	0	0	0	0
LC Shear Check	0.023	0.035	0.107	0.038	0.135	0.02	0.023	0.035	0.107	0.038	0.135	0.02	0.052	0.052	0.038	0.056	0.056	0.038
С	17	17	44	44	26	15	16	16	45	45	26	15	17	16	6	15	ţ,	ი
Loc[ft]	0	0	4.002	0	3.295	0	0	0	4.002	0	3.295	0	10	10	8.202	8.785	8.785	8.343
Code Check Loc[ft]	0.384	0.596	0.425	0.293	0.494	0.228	0.384	0.596	0.467	0.308	0.494	0.228	0.187	0.187	0.502	0.777	0.777	0.47
	BKT-10GA-10GAGUS	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	BKT-10GA-10GAGUS	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HAT4X16GA	HSS4X4X11-GA	HSS4X4X11-GA	HSS4X4X13GA	HSS4X4X13GA	HSS4X4X13GA	HSS4X4X13GA
Member	1 M29	2 M16	3 M5	4 M18	5 M1	6 M2	7 M24	8 M15	9 M32	10 M31	11 M30	12 M6	13 M8	14 M33	15 M25	16 M26	17 M27	18 M28

3/25/2025

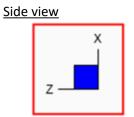
. , Page 1

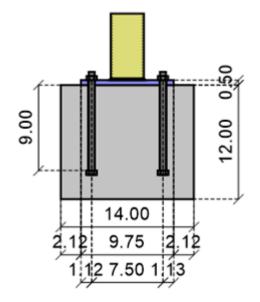
RISA-3D Version 22

۰,

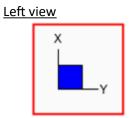

RISA Connection version 15.0.2

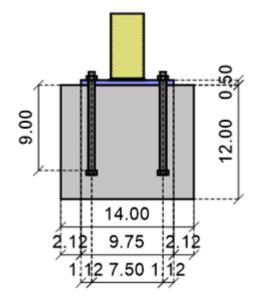
03.25.2025

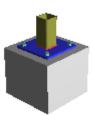



MAX GRAVITY: 2D Views Report

Single Column Base Plate Connection

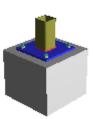



MAX GRAVITY: 2D Views Report (continued):


MAX GRAVITY: 2D Views Report (continued):

Single Column Base Plate Connection

MAX GRAVITY: Summary Report


Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	5.6	0 kips	Axial load on the	column
Strong Axis Shear	1.0	0 kips	Shear load on the strong axis bendi	e column that causes ing
Weak Axis Shear	1.6	0 kips	Shear load on the weak axis bendin	e column that causes g
Strong Axis Mome	e nt 0.0	0 kips-ft	Column moment axis	about the strong
Weak Axis Momer	nt 0.0	0 kips-ft	Column moment	about the weak axis

Connection	Required	Max Unity Check	Result
Column/Base Plate connection	Anchor Bolt Shear	0.24	PASS

Single Column Base Plate Connection

ASD

MAX GRAVITY: Base Plate Report

Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	5.6	0 kips	Axial load on the	column
Strong Axis Shear	1.0	0 kips	Shear load on the strong axis bendii	column that causes
Weak Axis Shear	1.6	0 kips	Shear load on the weak axis bending	column that causes g
Strong Axis Mome	nt 0.0	0 kips-ft	Column moment o axis	about the strong
Weak Axis Momer	nt 0.0	0 kips-ft	Column moment	about the weak axis

Note: Unless specified, all code references are from AISC 360-10

Limit State	Required	Available	Unity Check	Result
Geometry Restrictions				PASS
Check Min Bolt Spacing	Pass	Condition: S _{min}	>= (2+2/3)d _{bolt} (J3.3)	
S _{min}	7.50 in	Min bolt spacin	g	
d _{bolt}	0.62 in	Anchor bolt dia	meter	
Check Min Edge Distance	Pass	Condition: min(e_z, e_y) >= ED_{allow} (J3.4	4)
e _v	1.12 in	Min edge distar		
ez	1.12 in	Min edge distar	ice z	
ED _{allow}	0.88 in	Minimum allow	ed edge distance	
Check Max Edge Distance	Pass	Condition: Cond	lition: max(d , , d ,) <=	min(6.00 in, 12*t) (J3.5)
d _v	1.12 in	Max edge dista	/	
dz	1.12 in	Max edge dista	nce z	
ED _{allow}	6.00 in		ved edge distance	
t	0.50 in	Thickness of ba		
Check Anchor Bolt Encroachment on	Pass	,		
Column				
Concrete Bearing	0.06 ksi	1.59 ksi	0.04	PASS
R _n = 0.85 * f' _c * α		Ω = 2.31	(ACI 318-19 (22)	Table 22.8.3.2)
f' _c	3.00 ksi	Concrete comp	essive strength	
Pu	5.60 kips	Axial load on th	e column	
N	9.75 in	Plate length		
В	9.75 in	Plate width		
A ₁	95.06 in ²	Plate area = B*	V	
L	14.00 in	Concrete suppo		
W	14.00 in	Concrete suppo		
L'	14.00 in		te support length	
W'	14.00 in		te support width	
A ₂	196.00 in ²	Effective concre	te support area = L' * \	N′
α	1.44	Bearing stress in	ncrease factor = min(2,	$(A_2 / A_1)^{0.5})$
R _n /Ω	1.59 ksi	Allowable beari	ng stress	

continued on next page...

MAX GRAVITY: Base Plate Report (continued):

Limit State	Required	Available	Unity Check	Result
f _p	0.06 ksi	Required bearing	stress = P_u / A_1	
late Flexural Yielding(Compression)	0.03 kips-ft/in	0.11 kips-ft/in	0.23	PASS
$M_{n} = F_{v} * t_{p}^{2} / 4$		Ω = 1.67	(AISC DG1 (3.3.1	3))
F _y	36.00 ksi	Minimum yield s	trength of base plate	
t _p	0.50 in	Thickness of base	e plate	
Μ _n /Ω	0.11 kips-ft/in	Base plate bendi	ng capacity per unit w	vidth
N	9.75 in	Base plate lengtl		
В	9.75 in	Base plate width		
d	3.50 in	Column depth		
b	3.50 in	Column width		
m	3.21 in		/2 (per AISC DG1, sect	
n	3.21 in		2 (per AISC DG1, sect.	
	3.21 in		r dimension I = MAX(r	
f _p	0.06 ksi	•	stress (see 'Concrete	
M _{pl}	0.03 kips-ft/in	Required bending AISC DG1, sect. 3		dth, M _{pl} =f _p * I ² / 2 (p
nchor Bolt Shear	1.89 kips	8.01 kips	0.24	PASS
$R_n = F_{nv}^* A_b^* N_{bolt}$		Ω = 2.00	(J3-1)	
V _{uy}	1.00 kips	Strong axis shea		
V _{uz}	1.60 kips	Weak axis shear		
	1.89 kips	Resultant shear	force	
$V_u = (V_{uy}^2 + V_{uz}^2)^{0.5}$		-		
F _{nv}	26.10 ksi	Shear stress N ty	pe	
A _b	0.31 in ²	Area of bolt		
N _{bolt}	2	Number of bolts	(per AISC DG1, Sectio	n 3.5.3)
R _n /Ω	8.01 kips	Bolt shear ruptu	e strength	
nchor Bolt Bearing on Base Plate	1.89 kips	8.01 kips	0.24	PASS
$R_n = N_{bolt} * min(1.2*L_c*t_p*F_u, 2.4)$	*d _b *t _p *F _u , R _{n-bolt})	Ω = 2.00	(J3-6a)	
Vu	1.89 kips	Resultant shear j	orce, see 'Anchor Bol	t Shear' check
N _{bolt}	2	Number of bolts	(per AISC DG1, Sectio	n 3.5.3)
Θ	32.01 degrees	Angle between t	he resultant shear for	ce and z-axis
e _y	1.12 in	Edge distance y		
ez	1.12 in	Edge distance z		
d _c	0.34 in	Distance from ce	nter of bolt to the edg	ge of hole
L _c	0.98 in		listance for the weake	
t	0.50 in	Thickness of base	•	
t _p	0.62 in	Bolt diameter		
d _b			stress of material	
F _u	58.00 ksi		-	
R _{n-bolt}	8.01 kips		th, $R_{n-bolt} = F_{nv} * A_{bolt}$	
F _{nv}	26.10 ksi	Nominal shear st	ress of bolt	
A _{bolt}	0.31 in ²	Area of bolt		
Rn/Ω	8.01 kips	Bolt bearing stre	ngth	
olumn Weld Limitations				PASS
Weld Min Size			(J2.2b)	
Check Weld Min Size	Pass			
D	0.19 in	Weld size		
D _{min}	0.12 in	Min size allowed	man Table 12 4	

continued on next page...

MAX GRAVITY: Base Plate Report (continued):

	Limit State	Required	Available	Unity Check	Result
t _{min}		0.17 in	Controlling mem	ber thickness	
lumn Flang	ge Weld Strength	0.29 kips/in	2.78 kips/in	0.10	PASS
$Rn/\Omega = C$	C ₁ * α * 0.928 * D ₁₆				
Single Fi	illet				
0.928 = 0	0.6 * F _{E70} * 2 ^{0.5} /2 * 1/16	/ Ω, Ω=2.00 (AISC 14 ^t	^h Eqn 8-2b)		
C ₁		1.00		th coefficient (AISC 14	th table 8-3)
t		0.17 in	Base material th		,
α		1.00	-	oration factor (re-arro	angement of AISC 14 th
D		3.00	Eqn 9-2)	sixteenths of an inch	
D ₁₆					
r _u		0.29 kips/in		h of the weld for in-pl	
r _o		-0.00 kips/in	Required strengt	h of the weld for out-	of-plane force (tensile
r _{3d}		0.29 kips/in	Resultant force r	$_{3d} = (r_u^2 + r_0^2)^{0.5}$	
Rn/Ω		2.78 kips/in	Weld strength		
umn Web	Weld Strength	0.18 kips/in	2.78 kips/in	0.06	PASS
	C ₁ * α * 0.928 * D ₁₆				
Rn/Ω = 0	$c_1 u 0.520 D_{16}$				
Rn/Ω = C Single Fi					
Single Fi		/ Ω, Ω=2.00 (AISC 14 ^t	^h Eqn 8-2b)		
Single Fi	illet	/ Ω, Ω=2.00 (AISC 14 ^t 1.00		th coefficient (AISC 14	th table 8-3)
Single Fi 0.928 = (illet				th table 8-3)
Single Fi 0.928 = 0 C ₁	illet	1.00	Electrode streng Base material th	ickness (column)	th table 8-3) Ingement of AISC 14 th
Single Fi 0.928 = 0 C ₁ t α	illet	1.00 0.17 in	Electrode streng Base material th Base material pr Eqn 9-2)	ickness (column)	
Single Fi 0.928 = 0 C ₁ t	illet	1.00 0.17 in 1.00	Electrode streng Base material th Base material pr Eqn 9-2) Weld fillet size in	ickness (column) oration factor (re-arro	angement of AISC 14 th
Single Fi 0.928 = 0 C ₁ t α D ₁₆ r _u	illet	1.00 0.17 in 1.00 3.00	Electrode streng Base material th Base material pr Eqn 9-2) Weld fillet size in Required strengt	ickness (column) oration factor (re-arro sixteenths of an inch h of the weld for in-pl	angement of AISC 14 th
Single Fi 0.928 = 0 C ₁ t α D ₁₆	illet	1.00 0.17 in 1.00 3.00 0.18 kips/in	Electrode streng Base material th Base material pr Eqn 9-2) Weld fillet size in Required strengt Required strengt	ickness (column) oration factor (re-arro sixteenths of an inch h of the weld for in-pl	angement of AISC 14 ^{ti} ane force

MAX GRAVITY: Anchorage Design Report

Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	5.60) kips	Axial load on the c	olumn
Strong Axis Shear	1.00) kips	Shear load on the o strong axis bending	column that causes g
Weak Axis Shear	1.60) kips	Shear load on the o weak axis bending	column that causes
Strong Axis Mome	nt 0.00) kips-ft	Column moment a axis	bout the strong
Weak Axis Momen	t 0.00) kips-ft	Column moment a	bout the weak axis

Note: Unless specified, all code references are from ACI 318-19 (22)

Limit State	Required	Available	Unity Check	Result
Anchorage design is toggled off in the				No Calc
Connection Properties.				

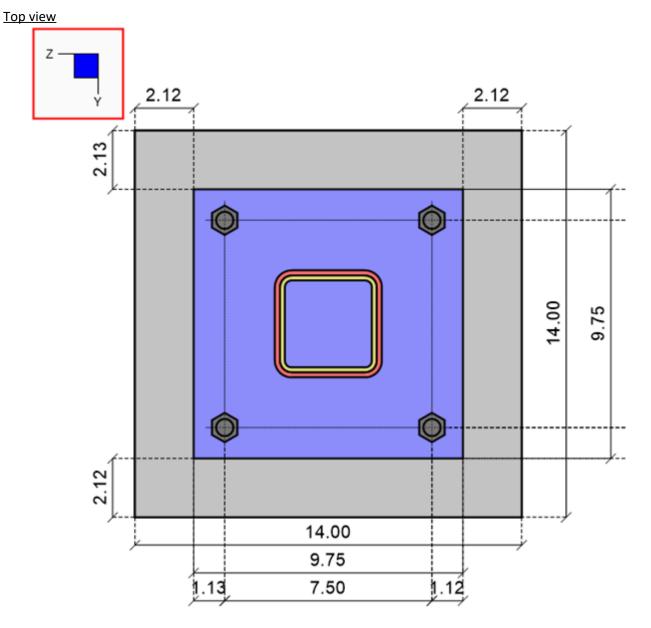
MAX GRAVITY: Members Report

Single Column Base Plate Connection

HSS3.5	X3.5X3
A500 Gr.B Rect	Material name
46.00 ksi	Minimum yield stress of material
58.00 ksi	Minimum tensile stress of material
29000.00 ksi	Modulus of elasticity
3.50 in	Depth
3.50 in	Width
2.24 in ²	Area
0.17 in	Wall Thickness
P0.50x	9.75x9.75
A36	Material name
36.00 ksi	Minimum yield stress of material
58.00 ksi	Minimum tensile stress of material
29000.00 ksi	Modulus of elasticity
9.75 in	Length
9.75 in	Width
0.50 in	Thickness
0.55	Static Friction Coefficient
0.69 in	Hole width
0.69 in	Hole height
2	Number of rows of holes
2	Number of holes per row
7.50 in	Row Spacing
7.50 in	Column Spacing
	x14.00x12.00
	46.00 ksi 58.00 ksi 29000.00 ksi 3.50 in 3.50 in 2.24 in ² 0.17 in P0.50x A36 36.00 ksi 58.00 ksi 58.00 ksi 29000.00 ksi 58.00 ksi 29000.00 ksi 58.00 ksi 29000.00 ksi 58.00 ksi 20000.00 ksi 58.00 ksi 20000.00 ksi 58.00 ksi 20000.00 ksi 2000000000000000000000000000000000000

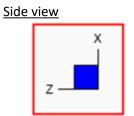
MAX GRAVITY: Connection Properties Report

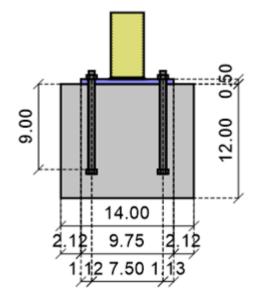
Single Column Base Plate Connection


Connection Title	MAX GRAVITY
Connection Type	Single Column Base Plate Connection
nchorage	
Anchorage Type	Cast-in-place
Perform Anchorage Calc	No
onnection Category	
Bolt Layout	Four
Plate Washers	No
pading (ASD)	
Axial	5.60 kips
Strong Axis Shear	1.00 kips
Weak Axis Shear	1.60 kips
Strong Axis Moment	0.00 kips-ft
Weak Axis Moment	0.00 kips-ft
omponents	
Column Section	HSS3.5X3.5X3
Material	A500 Gr.B Rect
Fy	46.00 ksi
Fu	58.00 ksi
E	29000.00 ksi
Lib	aiscdb32
A	2.24 in^2
D	3.50 in
B	3.50 in
Tdes	0.17 in
Base Plate	P0.50x9.75x9.75
Material	A36
Fy	36.00 ksi
Fu	58.00 ksi
E	29000.00 ksi
Length	9.75 in
Width	9.75 in
Thickness	0.50 in
Static Friction Coefficient	0.55 Coeff
Hole Type	STD
Concrete Support	C14.00x14.00x12.00
Length	14.00 in
Width	14.00 in
Thickness	12.00 in
Compressive Strength (f'c)	3.00 ksi
Concrete Weight	Normal Weight
Cracked Concrete	Yes
Edge Reinforcement	None or < no. 4 bar
Anchor Bolts	5/8" F1554 Gr.36-N
Material	F1554 Gr.36-N
Head Type	Hex Bolt
Torque Type	Untorqued Anchor
Diameter, in.	5/8"
Embedment depth	9.00 in
Bolt Spacing y	7.50 in
Bolt Spacing y	7.50 in
Column Weld	E70
	Fillet
Type Fillet Size	3.00 Sixteenths

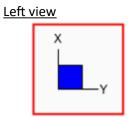
MAX GRAVITY: Connection Properties Report (continued):

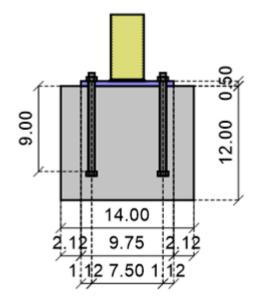
Fw	70.00 ksi
Assembly	
Edge Distance y	1.13 in
Edge Distance z	1.13 in
Edge Distance +y	2.13 in
Edge Distance -y	2.13 in
Edge Distance +z	2.13 in
Edge Distance -z	2.13 in

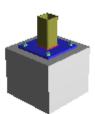

MAX UPLIFT: 2D Views Report


Single Column Base Plate Connection

3/25/2025

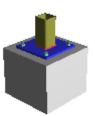

MAX UPLIFT: 2D Views Report (continued):




3/25/2025

MAX UPLIFT: 2D Views Report (continued):

MAX UPLIFT: Summary Report



Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	-2.5	50 kips	Axial load on the	column
Strong Axis Shear	1.0	0 kips	Shear load on the strong axis bendi	e column that causes ng
Weak Axis Shear	1.6	0 kips	Shear load on the weak axis bendin	e column that causes g
Strong Axis Mome	nt 0.0	0 kips-ft	Column moment axis	about the strong
Weak Axis Momer	nt 0.0	0 kips-ft	Column moment	about the weak axis

Connection	Required	Max Unity Check	Result
Column/Base Plate connection	Plate Flexural Yielding(Tension)	0.30	PASS

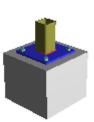
ASD

MAX UPLIFT: Base Plate Report

Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	-2.5	50 kips	Axial load on the	column
Strong Axis Shear	1.0	0 kips	Shear load on the strong axis bendi	e column that causes ng
Weak Axis Shear	1.6	0 kips	Shear load on the weak axis bendin	column that causes
Strong Axis Mome	nt 0.0	0 kips-ft	Column moment axis	about the strong
Weak Axis Momer	nt 0.0	0 kips-ft	Column moment	about the weak axis

Note: Unless specified, all code references are from AISC 360-10

Limit State	Required	Available	Unity Check	Result
Geometry Restrictions				PASS
Check Min Bolt Spacing	Pass	Condition: S _{min} >=	= (2+2/3)d _{bolt} (J3.3)	
S _{min}	7.50 in	Min bolt spacing		
d _{bolt}	0.62 in	Anchor bolt diame	eter	
Check Min Edge Distance	Pass	Condition: min(e _z	, e _v) >= ED _{allow} (J3.4	1)
e _v	1.12 in	Min edge distance	/	
ez	1.12 in	Min edge distance	? Z	
ED _{allow}	0.88 in	Minimum allowed	l edge distance	
Check Max Edge Distance	Pass	Condition: Conditi	on: max(d _z , d _v) <= i	min(6.00 in, 12*t) (J3.5)
d _v	1.12 in	Max edge distanc	- /	
dz	1.12 in	Max edge distanc	e z	
ED _{allow}	6.00 in	Maximum allowe	d edge distance	
t	0.50 in	Thickness of base	plate	
Check Anchor Bolt Encroachment on Column	Pass			
Plate Flexural Yielding(Tension)	0.11 kips-ft	0.36 kips-ft	0.30	PASS
$M_{n} = b_{e}^{*}F_{v}^{*}t_{p}^{2}/4$		Ω = 1.67	(AISC DG1 (3.3.13	3))
b _e	3.21 in	Effective width of	plate section (corner	bolt)
F _v	36.00 ksi	Minimum yield sti	rength of base plate	
t _p	0.50 in	Thickness of base	plate	
Μ _n /Ω	0.36 kips-ft	Base plate bendin	g strength	
т	0.62 kips	Tension force in a	nchor bolt	
х	2.09 in	Moment arm for a	anchor bolt	
M _{pl}	0.11 kips-ft	Bending moment	caused by tension at	bolt, M _{pl} =T*x
Anchor Bolt Tension	0.62 kips	6.67 kips	0.09	PASS
$R_n = F_{nt} * A_b$		Ω = 2.00	(J3-2)	
Prying effects are ignored				
Check User Note Limit:	Pass	Condition: (f _{rt} /F _n	t ≤ 0.3) or (f _{rv} /F _{nv} ≤	0.3)


MAX UPLIFT: Base Plate Report (continued):

Limit State	Required	Available Unity Check Result	
f _{rt}	2.04 ksi	Required tensile stress, $f_{rt} = T_{bolt} / A_b$	
F _{nt}	43.50 ksi	Available tensile stress, per Table J3.2	
f _{rv}	3.07 ksi	Required shear stress: $f_{rv} = (V_u / N_{bolt}) / A_b$	
F _{nv}	26.10 ksi	Available shear stress, per Table J3.2	
Because $f_{rt}/F_{nt} \le 0.3$ and f_{rv}/F_{nv}	, ≤ 0.3 <i>,</i>		
effects of combined tension and stress need not be investigated	d shear		
T _{bolt}	0.62 kips	Tension at bolts	
Vu	1.89 kips	Resultant shear force, see 'Anchor Bolt Shear' check	
N _{bolt}	2	Number of bolts (DG-1, Section 3.5.3)	
A _b	0.31 in ²	Bolt cross sectional area	
R_n/Ω	6.67 kips	Bolt tensile strength	
nor Bolt Shear	1.89 kips	8.01 kips 0.24 PASS	
$R_n = F_{nv}^* A_b^* N_{bolt}$	·	Ω = 2.00 (J3-1)	
V _{uy}	1.00 kips	Strong axis shear	
V _{uz}	1.60 kips	Weak axis shear	
$V_u = (V_{uy}^2 + V_{uz}^2)^{0.5}$	1.89 kips	Resultant shear force	
F _{nv}	26.10 ksi	Shear stress N type	
A _b	0.31 in ²	Area of bolt	
N _{bolt}	2	Number of bolts (per AISC DG1, Section 3.5.3)	
R _n /Ω	8.01 kips	Bolt shear rupture strength	
nor Bolt Bearing on Base Plate	1.89 kips	8.01 kips 0.24 PASS	
$R_n = N_{bolt} * min(1.2*L_c*t_p*F_u,$	2.4*d _b *t _p *F _u , R _{n-bolt})	Ω = 2.00 (J3-6a)	
V _u	1.89 kips	Resultant shear force, see 'Anchor Bolt Shear' check	
N _{bolt}	2	Number of bolts (per AISC DG1, Section 3.5.3)	
Θ	32.01 degrees	Angle between the resultant shear force and z-axis	
e _y	1.12 in	Edge distance y	
ez	1.12 in	Edge distance z	
d _c	0.34 in	Distance from center of bolt to the edge of hole	
L _c	0.98 in	Minimum clear distance for the weakest bolt, L _c = mir	$n(e_y/$
·		$ sin(\Theta) , e_z/ cos(\Theta)) - d_c$	
	0.50 in	sin(Θ) , e _z / cos(Θ)) – d _c Thickness of base plate	
t _p d _b			
t _p	0.50 in	Thickness of base plate	
t _p d _b F _u	0.50 in 0.62 in	Thickness of base plate Bolt diameter	
t _p d _b	0.50 in 0.62 in 58.00 ksi	Thickness of base plate Bolt diameter Minimum tensile stress of material	
t _p d _b F _u R _{n-bolt} F _{nv}	0.50 in 0.62 in 58.00 ksi 8.01 kips	Thickness of base plate Bolt diameter Minimum tensile stress of material Bolt shear strength, R _{n-bolt} =F _{nv} *A _{bolt}	
t _p d _b F _u R _{n-bolt}	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi	Thickness of base plateBolt diameterMinimum tensile stress of materialBolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of bolt	
t _p d _b F _u R _{n-bolt} F _{nv} A _{bolt} Rn/Ω	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi 0.31 in ²	Thickness of base plate Bolt diameter Minimum tensile stress of material Bolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of bolt Area of bolt	
t _p d _b F _u R _{n-bolt} F _{nv} A _{bolt} Rn/Ω	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi 0.31 in ²	Thickness of base plateBolt diameterMinimum tensile stress of materialBolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of boltArea of boltBolt bearing strength	
t _p d _b F _u R _{n-bolt} F _{nv} A _{bolt} Rn/Ω mn Weld Limitations Weld Min Size Check Weld Min Size	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi 0.31 in ² 8.01 kips Pass	Thickness of base plate Bolt diameter Minimum tensile stress of material Bolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of bolt Area of bolt Bolt bearing strength PASS (J2.2b)	
t _p d _b F _u R _{n-bolt} F _{nv} A _{bolt} Rn/Ω mn Weld Limitations Weld Min Size Check Weld Min Size D	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi 0.31 in ² 8.01 kips Pass 0.19 in	Thickness of base plate Bolt diameter Minimum tensile stress of material Bolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of bolt Area of bolt Bolt bearing strength PASS (J2.2b) Weld size	
t _p d _b F _u R _{n-bolt} F _{nv} A _{bolt} Rn/Ω mn Weld Limitations Weld Min Size Check Weld Min Size	0.50 in 0.62 in 58.00 ksi 8.01 kips 26.10 ksi 0.31 in ² 8.01 kips Pass	Thickness of base plate Bolt diameter Minimum tensile stress of material Bolt shear strength, $R_{n-bolt}=F_{nv}*A_{bolt}$ Nominal shear stress of bolt Area of bolt Bolt bearing strength PASS (J2.2b)	

MAX UPLIFT: Base Plate Report (continued):

Limit State	Required	Available	Unity Check	Result
olumn Flange Weld Strength	0.36 kips/in	2.78 kips/in	0.13	PASS
$Rn/\Omega = C_1 * \alpha * 0.928 * D_{16}$				
Single Fillet				
0.928 = 0.6 * F _{E70} * 2 ^{0.5} /2 * 1/10	6 / Ω, Ω=2.00 (AISC 14 [†]	th Eqn 8-2b)		
C ₁	1.00	Electrode streng	th coefficient (AISC 14	th table 8-3)
t	0.17 in	Base material th	ickness (column)	
α	1.00	Base material pr Eqn 9-2)	oration factor (re-arro	angement of AISC 14 th
D ₁₆	3.00	Weld fillet size in	sixteenths of an inch	
r _u	0.29 kips/in	Required strengt	h of the weld for in-p	ane force
r _o	-0.22 kips/in	Required strengt	h of the weld for out-	of-plane force (tensile)
r _{3d}	0.36 kips/in	Resultant force r	$_{3d} = (r_u^2 + r_0^2)^{0.5}$	
Rn/Ω	2.78 kips/in	Weld strength		
olumn Web Weld Strength	0.29 kips/in	2.78 kips/in	0.10	PASS
$Rn/\Omega = C_1 * \alpha * 0.928 * D_{16}$				
Single Fillet				
0.928 = 0.6 * F _{E70} * 2 ^{0.5} /2 * 1/10	6 / Ω, Ω=2.00 (AISC 14 ¹	th Eqn 8-2b)		
C ₁	1.00	Electrode streng	th coefficient (AISC 14	th table 8-3)
t	0.17 in	Base material th	ickness (column)	
t α	0.17 in 1.00	Base material pr		angement of AISC 14 th
		Base material pr Eqn 9-2)		
α	1.00	Base material pr Eqn 9-2) Weld fillet size in	oration factor (re-arr	
α D ₁₆	1.00 3.00	Base material pr Eqn 9-2) Weld fillet size in Required strengt	oration factor (re-arro sixteenths of an inch h of the weld for in-p	lane force
α D ₁₆ r _u	1.00 3.00 0.18 kips/in	Base material pr Eqn 9-2) Weld fillet size in Required strengt Required strengt	oration factor (re-arro sixteenths of an inch h of the weld for in-p	

MAX UPLIFT: Anchorage Design Report

Material Properties:				
Column	HSS3.5X3.5X3	A500 Gr.B Rect	F _y = 46.00 ksi	F _u = 58.00 ksi
Base Plate	P0.50x9.75x9.7 5	A36	F _γ = 36.00 ksi	F _u = 58.00 ksi
Input Data:				
Axial	-2.5	0 kips	Axial load on the c	olumn
Strong Axis Shear	1.00) kips	Shear load on the strong axis bendin	column that causes g
Weak Axis Shear	1.60) kips	Shear load on the weak axis bending	column that causes
Strong Axis Mome	nt 0.00	0 kips-ft	Column moment a axis	bout the strong
Weak Axis Momen	t 0.00) kips-ft	Column moment a	bout the weak axis

Note: Unless specified, all code references are from ACI 318-19 (22)

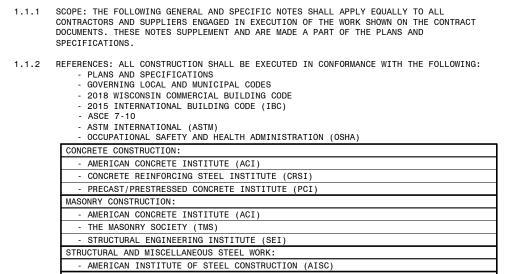
Limit State	Required	Available	Unity Check	Result
Anchorage design is toggled off in the				No Calc
Connection Properties.				

MAX UPLIFT: Members Report

Single Column Base Plate Connection

Column	HSS3.5	5X3.5X3
laterial		
Name	A500 Gr.B Rect	Material name
Fy	46.00 ksi	Minimum yield stress of material
Fu	58.00 ksi	Minimum tensile stress of material
E	29000.00 ksi	Modulus of elasticity
Aember Properties		
d	3.50 in	Depth
b	3.50 in	Width
а	2.24 in ²	Area
t _{des}	0.17 in	Wall Thickness
Base Plate	P0.50x	9.75x9.75
Material		
Name	A36	Material name
Fy	36.00 ksi	Minimum yield stress of material
Fu	58.00 ksi	Minimum tensile stress of material
E	29000.00 ksi	Modulus of elasticity
Member Properties		
L	9.75 in	Length
W	9.75 in	Width
t	0.50 in	Thickness
μ	0.55	Static Friction Coefficient
lole		
Hole type	Standard	
D _x	0.69 in	Hole width
Dy	0.69 in	Hole height
R	2	Number of rows of holes
С	2	Number of holes per row
R _s	7.50 in	Row Spacing
C _s	7.50 in	Column Spacing
Concrete Support	C14.00	x14.00x12.00
· · · · · · · · · · · · · · · · · · ·		

MAX UPLIFT: Connection Properties Report


Single Column Base Plate Connection

Connection Title	MAX UPLIFT
Connection Type	Single Column Base Plate Connection
nchorage	
Anchorage Type	Cast-in-place
Perform Anchorage Calc	No
onnection Category	
Bolt Layout	Four
Plate Washers	No
oading (ASD)	
Axial	-2.50 kips
Strong Axis Shear	1.00 kips
Weak Axis Shear	1.60 kips
Strong Axis Moment	0.00 kips-ft
Weak Axis Moment	0.00 kips-ft
omponents	
Column Section	HSS3.5X3.5X3
Material	A500 Gr.B Rect
Fy	46.00 ksi
Fu	58.00 ksi
E	29000.00 ksi
Lib	aiscdb32
A	2.24 in^2
D	3.50 in
B	3.50 in
Tdes	0.17 in
Base Plate	P0.50x9.75x9.75
Material	A36
Fy	36.00 ksi
Fu	58.00 ksi
E	29000.00 ksi
Length	9.75 in
Width	9.75 in
Thickness	0.50 in
Static Friction Coefficient	0.55 Coeff
Hole Type	STD
Concrete Support	C14.00x14.00x12.00
Length	14.00 in
Width	14.00 in
Thickness	12.00 in
Compressive Strength (f'c)	3.00 ksi
Concrete Weight	Normal Weight
Cracked Concrete	Yes
Edge Reinforcement	None or < no. 4 bar
Anchor Bolts	5/8" F1554 Gr.36-N
Material	F1554 Gr.36-N
	Hex Bolt
Head Type	Untorqued Anchor
Torque Type	5/8"
Diameter, in.	
Embedment depth	9.00 in
Bolt Spacing y	7.50 in
Bolt Spacing z	7.50 in
Column Weld	E70
Туре	Fillet
Fillet Size	3.00 Sixteenths

MAX UPLIFT: Connection Properties Report (continued):

Fw	70.00 ksi
Assembly	
Edge Distance y	1.13 in
Edge Distance z	1.13 in
Edge Distance +y	2.13 in
Edge Distance -y	2.13 in
Edge Distance +z	2.13 in
Edge Distance -z	2.13 in

GΕ	ΝE	RΑ	L	N	0	т	E	s
1.1		GEN	ERAL					

STEEL JOIST, STEEL DECK, AND ACCESSORIES:	
- STEEL JOIST INSTITUTE (SJI)	
- STEEL DECK INSTITUTE (SDI)	
COLD-FORMED STEEL FRAMING & TRUSSES:	

-	AMERICAN IRON AND STEEL INSTITUTE (AISI)	
-	COLD-FORMED STEEL ENGINEERS INSTITUTE (CFSEI)	
חכ	CONSTRUCTION & TRUSSES:	Ì

- NATIONAL DESIGN SPECIFICATION (NDS) FOR WOOD CONSTRUCTION AMERICAN INSTITUTE OF TIMBER CONSTRUCTION (AITC) APA - THE ENGINEERED WOOD ASSOCIATION (APA)

TRUSS PLATE INSTITUTE (TPI) CONTRACTOR SHALL ENSURE FAMILIARITY WITH THE ABOVE ITEMS. INSPECTIONS AND OBSERVATIONS WILL BE IN CONFORMANCE WITH THE ABOVE.

1.1.3 DESIGN DA ISK CATEGO

SNOW LOADS (S):			
GROUND SNOW LOAD, Pg		4	0 PSF
EXPOSURE FACTOR, Ce			1.0
THERMAL FACTOR, Ct			0.85
IMPORTANCE FACTOR, Is			1.0
FLAT ROOF SNOW LOAD, P _f		16.	0 PSF
ROOF SLOPE FACTOR, C _s			0.67
DESIGN ROOF SNOW LOAD, P_s	16.0	PSF +	DRIFT
WIND LOAD (W)(ASCE 7-10 MWFRS DIRECTIONAL PROCEDURE, PART 1, AL	LL H):		
BASIC WIND SPEED, Vult		11	5 MPH
EXPOSURE CATEGORY			В
ENCLOSURE CLASSIFICATION		ENC	LOSED

INTERNAL PRESSURE COEFFICIENT, O

COMPONENTS AND CLADDING DESIGN P	RESSURES: (ASC	E 7-10 CHAPTER 3	30)						
				_					
COMPONE	COMPONENTS AND CLADDING PRESSURES								
ROOF ZONE	ROOF ZONE EFFECTIVE WIND AREAS (ULITMATE LOADS)								
	10 SF	25 SF	50 SF						
INTERIOR ROOF	-21.8 PSF	-21.0 PSF	-20.4 PSF						
EDGE ROOF	-37.9 PSF	-33.9 PSF	-30.9 PSF						
CORNER ROOF	-56.0 PSF	-51.2 PSF	-47.6 PSF						
INTERIOR WALL	25.8 PSF	24.4 PSF	23.3 PSF						
EDGE WALL	31.9 PSF	29.0 PSF	26.9 PSF						
EDGE ZONE STRIP WIDTH	4.2 FT								
*NOTES:									
- REFER TO ASCE 7-10, FOR ZONE DIAGRAMS.									
- PLUS AND MINUS SIGNS FROM BUILDING SURFAC			ARD OR AWAY						
- PRESSURES MAY BE INT	ERPOLATED BETWE	EN THE EFFECTIV	E WIND AREAS.						
- SEE DRAWINGS FOR NET	UPLIFT ON JOIS	STS AND JOIST GI	RDERS.						
SEIMIC (E):									
IMPORTANCE FACTOR, Ie				1.0					
0.2 _s MAPPED SPECTRAL RESPONSE	ACCELERATION,	Ss		5.30%					
1.0 _s MAPPED SPECTRAL RESPONSE	ACCELERATION,	S ₁		3.60%					

SITE CLASS	D
0.2 $_{s}$ SPECTRAL RESPONSE COEFFICIENT, SDS	0.057
1.0 $_{s}$ SPECTRAL RESPONSE COEFFICIENT, S_{D1}	0.058
SEISMIC DESIGN CATEGORY	А
STRUCTUTRAL SYSTEM	LIGHT FRAME
SEISMIC RESISTING SYSTEM	STEEL ECCENTRICALLY BRACED FRAME
RESPONSE MODIFICATION COEFFICIENT, R	6.0
SYSTEM OVERSTRENGTH FACTOR, OMEGA	2.0
DEFLECTION AMPLIFICATION FACTOR, C_d	5.0
SEISMIC RESPONSE COEFFICIENT, C_s	0.010
ANALYSIS PROCEDURE	EQUIVALENT LATERAL FORCE ANALYSIS

100 YR, 1 HR RAINFALL (INCHES) 1.1.4 DESIGN CRITERIA:

CONCRETE (NORMAL WEIGHT):	
FOOTINGS AND SUB SLABS	f' _c = 3000 PSI
CAST-IN-PLACE WALLS	f' _c = 4000 PSI
INTERIOR SLABS-ON-GRADE	f' _c = 4000 PSI
EXTERIOR REINFORCED SLABS	f' _c = 5000 PSI
REINFORCING STEEL:	
#3 BARS & LARGER, ASTM A615 GRADE 60	F _y = 60000 PSI

- 1.1.5 EXECUTION: CONTRACTOR TO CROSS CHECK DIMENSIONS, ELEVATIONS, SECTIONS, AND DETAILS BETWEEN ARCHITECTURAL, MECHANICAL, AND STRUCTURAL PLANS. AMBROSE ENGINEERING IS TO BE NOTIFIED OF ANY VARIANCE THAT WILL AFFECT THE STRUCTURAL FRAMING BEFORE CONTRACTOR BEGINS WORK. ALL EQUIPMENT SUPPORTS AND ANCHORAGES TO BE CROSS CHECKED WITH MANUFACTURER'S DRAWINGS, CONTRACTORS SHALL VERIFY ALL PROFILES, HEIGHTS, AND DIMENSIONS AT PROJECT SITE PRIOR TO FABRICATION OF ANY MATERIAL AND INFORM THE ENGINEER OF RECORD OF ANY DISCREPANCIES OR FRAMING INTERFERENCES. 1.1.6 PROJECT CONDITIONS: ALL EXISTING BUILDING DIMENSIONS AND CONDITIONS MUST BE
- FIELD VERIFIED PRIOR TO FABRICATION. AMBROSE ENGINEERING SHALL NOT BE RESPONSIBLE FOR ANY EXISTING INFORMATION SUPPLIED BY THE OWNER/ARCHITECT NOR BE LIABLE FOR THOSE EXISTING CONDITIONS THAT VARY FROM THE PREVIOUSLY GIVEN INFORMATION. ARCHITECT/ENGINEER APPROVAL OF SHOP DRAWINGS DOES NOT RELIEVE CONTRACTOR OF THIS RESPONSIBILITY. 1.1.7 SHOP DRAWINGS/SUBMITTALS: SHALL BE SUBMITTED BY THE GENERAL CONTRACTOR TO THE
- ARCHITECT/ENGINEER FOR APPROVAL BEFORE FABRICATION MAY PROCEED. SHOP DRAWINGS/SUBMITTALS SHALL BE PROVIDED FOR THE FOLLOWING COMPONENTS: CONCRETE DESIGN MIXES, REINFORCING STEEL. SEE SPECIFIC MATERIALS SECTIONS FOR ADDITIONAL INFORMATION. NOTES:
- GENERAL CONTRACTOR SHALL REVIEW AND STAMP SHOP DRAWINGS BEFORE SUBMITTING TO ARCHITECT/ENGINEER. TRANSFERENCE OF ELECTRONIC FILES BY THE GENERAL CONTRACTOR TO REVIEWERS SHALL INDICATE REVIEW OF AND ACCEPTANCE OF SHOP DRAWINGS AS DELIVERED, REGARDLESS OF APPLICATION OF REVIEW STAMP OR NOT.
- PROVIDE ELECTRONIC SHOP DRAWINGS IN PDF FORMAT FOR REVIEW. ALL SHOP DRAWINGS SHALL CONTAIN THE ISSUE DATE INDICATED ON THE CONSTRUCTION DOCUMENTS, ALONG WITH ANY ADDENDUMS OR REVISION DATES.
- COPIES OF THE STRUCTURAL DRAWINGS SUBMITTED AS SHOP DRAWINGS WILL BE REJECTED. - ANY DEVIATIONS FROM THE CONTRACT DOCUMENTS SHALL BE NOTED (CLOUD, NOTE, ETC.) ON THE SHOP DRAWINGS SUBMITTED FOR APPROVAL.
- ANY CHANGES ON RESUBMITTED SHOP DRAWINGS SHALL BE CLOUDED. STANDARD SHOP DRAWING REVIEW TIME IS 10 WORKING DAYS FROM THE DAY THE SHOP DRAWINGS HAVE BEEN RECEIVED. MULTIPLE SIMULTANEOUS SUBMISSIONS MAY ALTER REVIEW TIMES. - AMBROSE ENGINEERING WILL NOT BE RESPONSIBLE FOR DELAYS CAUSED BY THE REJECTION OF

1.1.8 DEFERRED COMPONENT SUBMITTALS: SHALL BE SUBMITTED BY THE GENERAL CONTRACTOR TO THE ARCHITECT/ENGINEER PRIOR TO CONSTRUCTION. DEFERRED SUBMITTALS SHALL BE PROVIDED FOR THE FOLLOWING COMPONENTS: GREENHOUSE FRAMING.

INADEQUATE OR INCORRECT SHOP DRAWINGS.

NOTES:									
- GENERAL	CONTRACTOR	SHALL R	EVIEW AND	STAMP	SHOP	DRAWINGS	BEFORE	SUBMITTING	Т0
ARCHITE	CT/ENGINEER	TRANSF	ERENCE OF	ELECT	RONIC	FILES BY	THE GEI	NERAL CONTR	ACTOR
TO REVI	EWERS SHALL	INDICAT	E REVIEW	OF AND	ACCEF	TANCE OF	SHOP D	RAWINGS AS	DELIVERED

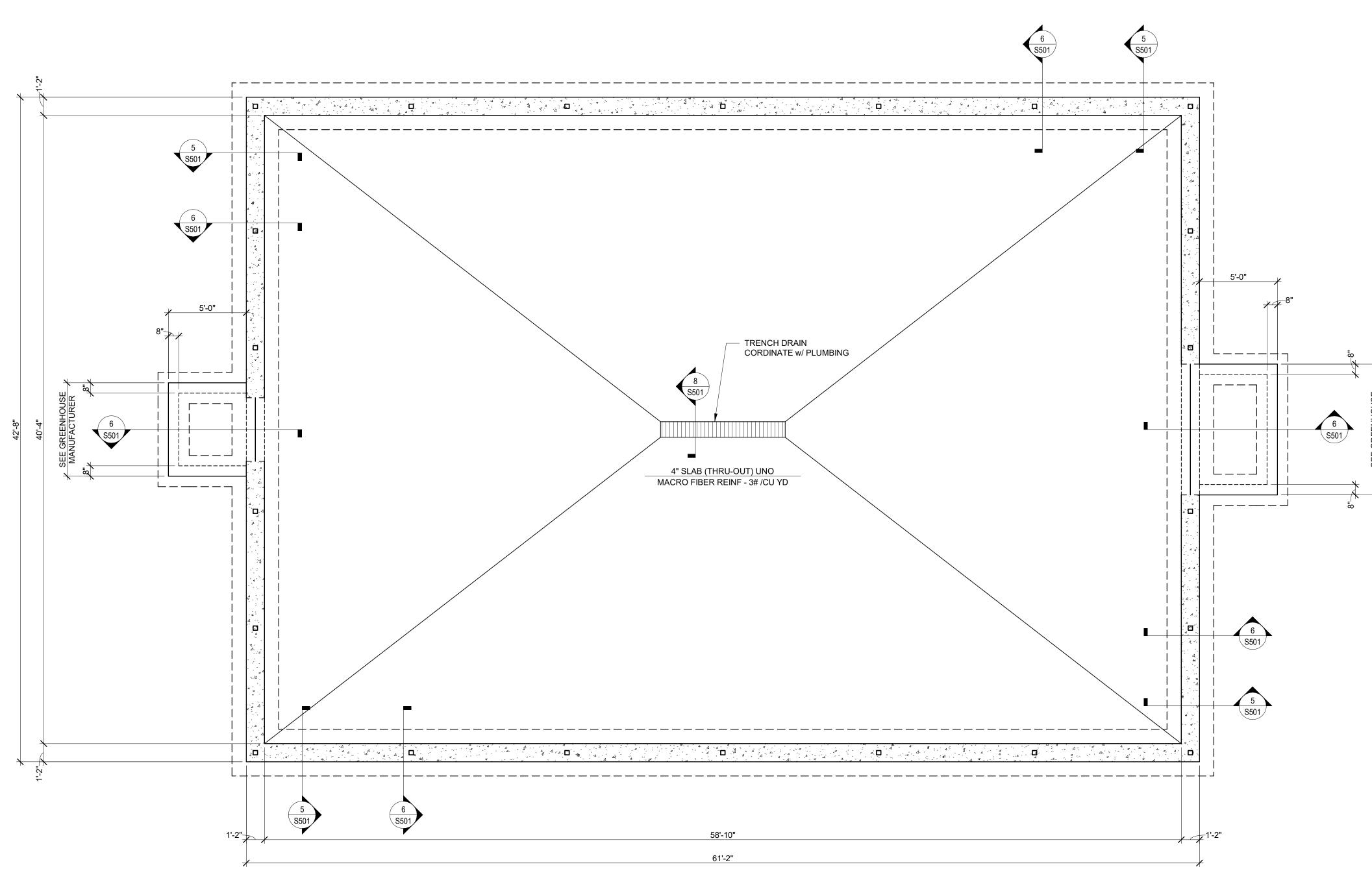
- REGARDLESS OF APPLICATION OF REVIEW STAMP OR NOT. PROVIDE ELECTRONIC SHOP DRAWINGS IN PDF FORMAT FOR REVIEW. - ALL COMPONENT SUBMITTALS SHALL BEAR AN ORIGINAL SEAL AND SIGNATURE OF THE
- COMPONENT DESIGNER. ALL SUBMITTED COPIES MUST BE THE FINAL "FIELD USE" SETS WHICH INCLUDE ALL CORRECTIONS MADE DUE TO SHOP DRAWING REVIEW COMMENTS.
- 1.1.9 SPECIAL INSPECTIONS: AN INSPECTION & TESTING COMPANY SHALL BE RETAINED IN ACCORDANCE WITH THE IBC FOR THE FOLLOWING:
- SOILS AND EARTHWORK SUPPORTING FOUNDATIONS AND SLABS. CONCRETE TEST CYLINDERS AND STRENGTH TESTING. CONCRETE REINFORCING.
- POST INSTALLED EXPANSION AND EPOXY ANCHORS. 1.1.10 CONSTRUCTION LOADS: PLACEMENT OF CONSTRUCTION EQUIPMENT, MATERIALS, AND PERSONNEL SHALL NOT EXCEED THE DESIGN LIVE LOAD OF THE STRUCTURE. CONCRETE SHALL CURE A MINIMUM OF 7 DAYS BEFORE THE APPLICATION OF CONSTRUCTION LOADS AND ACHIEVE AT LEAST 85% OF THE 28 DAY COMPRESSIVE STRENGTH AS PROVEN BY CYLINDER BREAKS. IN ADDITION, EQUIPMENT PLACED ON SLAB -ON-GRADE FLOORS SHALL ALSO COMPLY WITH THE FOLLOWING: FORKLIFT SPACING BETWEEN WHEELS ON AXLE IS NOT LESS THAN 38" OC OR SCISSOR LIFT SPACING BETWEEN WHEELS ON AXLE IS NOT LESS THAN 25" OC. SLAB-ON-GRADE: ALLOWABLE EQUIPMENT AXLE LOADS
 - SLAB DEPTH FORKLIFT SCISSOR/PLATFORM LIFTS NONE 8,600 LBS 4 " 5,400 LBS 6,800 LBS 5" 11,400 LBS 9,200 LBS WHEN AXLE LOADS EXCEED THE VALUES LISTED ABOVE, OR WHEN WHEEL SPACING IS LESS THAN OC SPACING, CONTACT ENGINEER PRIOR TO OPERATING UNAUTHORIZED EQUIPMENT.
- 1.1.11 FIELD MODIFICATIONS: MODIFICATIONS OF STRUCTURAL MEMBERS DUE TO MISLOCATION, MISFIT, MECHANICAL INTERFERENCE, OR ANY OTHER CONSTRUCTION ISSUE SHALL NOT BE MADE WITHOUT THE PRIOR APPROVAL OF ENGINEER. NO OPENING SHALL BE PLACED IN ANY STRUCTURAL MEMBER UNLESS SHOWN ON THE CONTRACT STRUCTURAL BAWINGS OR THE APPROVED SHOP DRAWING
- 1.1.12 PERMANENT EQUIPMENT: SHALL BE LOCATED ONLY ON THE STRUCTURAL MEMBERS INTENDED TO SUPPORT THIS EQUIPMENT AS SHOWN ON THE CONTRACT DRAWINGS OR THE APPROVED SHOP DRAWINGS. IF STRUCTURAL SUPPORT IS NOT CLEAR, OR A QUESTION ARISES, CONTACT STRUCTURAL ENGINEER OF RECORD PRIOR TO EQUIPMENT INSTALLATION.

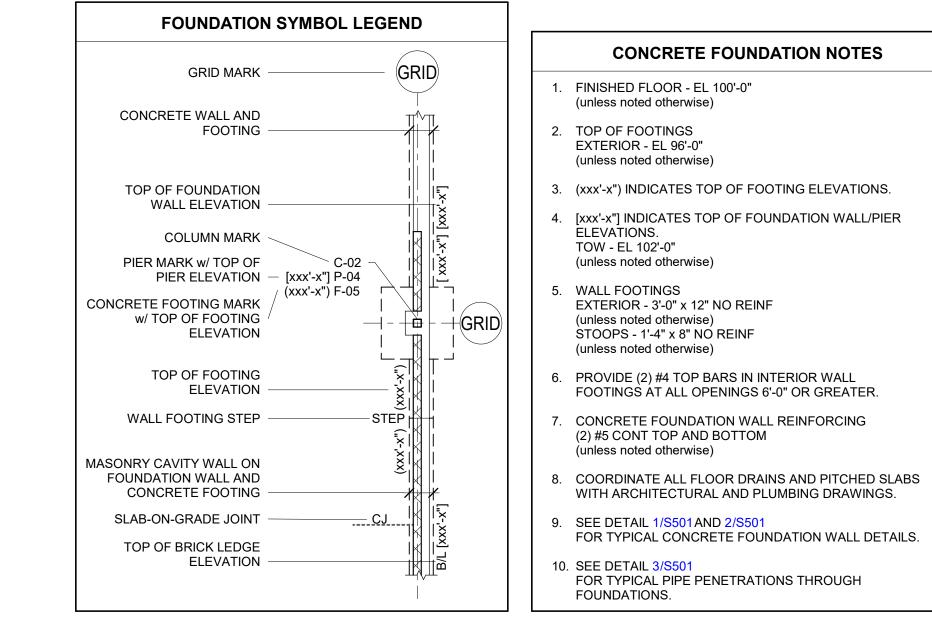
2.1.1	THE CONTRACTOR SHALL READ THE GEOTECHNICAL REPORT AND BE THOROUGH THE SITE AND THE SUBGRADE INFORMATION GIVEN THEREIN. ALL SUBGRADE FILL, FILL PLACEMENT, AND FOUNDATION CONSTRUCTION SHALL BE PERFOR COMPLIANCE WITH THE STRUCTURAL DOCUMENTS AND THE GEOTECHNICAL REP BE OBSERVED, TESTED, AND APPROVED BY THE PROJECT'S GEOTECHNICAL E PRIOR TO PROCEEDING WITH FOUNDATION CONSTRUCTION.	PREPARATIONS, MED IN STRICT ORT AND SHALL
2.1.2	EXCAVATIONS: ALL UNSUITABLE EXISTING FILL AND TOPSOIL SHALL BE EX FOOTING BEARING AND REPLACED IN ACCORDANCE WITH THE GEOTECHNICAL RECOMMENDATIONS. IF EXCAVATIONS SHOULD INDICATE A SAFE SOIL BEARI LESS THAN THE DESIGN CRITERIA SOIL BEARING CAPACITY LISTED, THE E SHALL BE NOTIFIED IMMEDIATELY AND THE FOUNDATION REVISED TO MEET	REPORT NG CAPACITY NGINEER OF RECORD
2.1.3	SITE PREPARATION: ALL UNSUITABLE EXISTING FILL AND TOPSOIL SHALL WITHIN THE BUILDING FOOTPRINT AND REPLACED TO FINISHED PAD ELEVAT ACCORDANCE WITH THE GEOTECHNICAL REPORT RECOMMENDATIONS. PROVIDE AGGREGATE SUBBASE AND VAPOR RETARDER ABOVE PAD AND BELOW SLAB PER SPECIFICATIONS AND GEOTECHNICAL REPORT RECOMMENDATIONS.	ION IN COMPACTED
2.1.4	BACKFILLING: BACKFILL EACH SIDE OF FOUNDATION WALLS IN EQUAL LIFT GRADES CREATE AN UNBALANCED CONDITION, BACKFILL AS FOLLOWS: AT F STRUCTURALLY CONNECTED TO SLABS (SUCH AS DOCK WALLS), BRACE TOP O SLAB IS IN PLACE AND CURED 7 DAYS MINIMUM. AT BASEMENT WALLS, DO UNTIL FIRST FLOOR CONSTRUCTION IS COMPLETE OR TOP OF WALLS ARE BR WALLS ARE NOT STRUCTURALLY CONNECTED AT THE TOP (SUCH AS RETAININ BRACING IS NOT REQUIRED.	OUNDATIONS WALLS F WALL UNTIL NOT BACKFILL ACED. WHERE
2.1.5	THE CONSTRUCTION DRAWINGS AND THE PROJECT SPECIFICATIONS SHALL BE BY THE CONTRACTOR FOR REVIEW AND COMMENT BY THE GEOTECHNICAL ENGI TO CONSTRUCTION TO ENSURE CONFORMANCE BETWEEN THE FOUNDATION DESI INTERPRETATION OF THE GEOTECHNICAL RECOMMENDATIONS.	NEER PRIOR
2.1.6	IN THE ABSENSE OF THE GEOTECHNICAL REPORT, A GEOTECHNICAL ENGINEE FOR SERVICES DURING EXCAVATION TO ASSURE SUITABLE BEARING CONDITI CRITERIA LISTED IN THESE NOTES IS MET.	
3.1 C	ONCRETE:	
3.1.1	REFERENCES: CONCRETE CONSTRUCTION SHALL COMPLY WITH THE FOLLOWING AS MODIFIED HEREIN:	STANDARDS AND
	ACI 117 "SPECIFICATIONS FOR TOLERANCES FOR CONCRETE CONSTRUCT MATERIALS"	ION AND
	ACI 301 "SPECIFICATIONS FOR STRUCTURAL CONCRETE" ACI SP-66 "ACI DETAILING MANUAL" ACI 318 "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE"	
	ACI 347 "GUIDE TO FORNWORK FOR CONCRETE" ACI 360 "GUIDE TO DESIGN OF SLABS-ON-GROUND" CRSI "MANUAL OF STANDARD PRACTICE" CRSI "PLACING REINFORCING BARS"	
3.1.2	MATERIALS: PROPORTION CONCRETE MATERIALS TO ATTAIN 28 DAY CONCRET STRENGTHS INDICATED IN THE DESIGN CRITERIA. SEE SPECIFICATIONS FO MATERIAL REQUIREMENTS.	
3.1.3	SHOP DRAWINGS/SUBMITTALS: SUBMIT CONCRETE MIX DESIGNS, COMPRESSIV TEST HISTORY, CEMENT, FLY ASH, AGGREGATE TEST REPORTS, ADMIXTURES REINFORCING, REBAR PLACEMENT AND FABRICATION PLANS, LAP LENGTHS, DIAGRAMS, AND ALL DETAILS AS REQUIRED TO COMPLETE INSTALLATION.	, FIBER
3.1.4	ACCESSORIES: ALL CONCRETE ACCESSORIES SUCH AS CHAIRS, TIES, ETC., CONTACT WITH FORMWORK OR EXPOSED CONCRETE SHALL BE GALVANIZED OR COATED. CONCRETE BLOCK OR CLAY MASONRY SHALL NOT BE USED AS CHAIR OF SLAB-ON-GRADE REINFORCING.	PLASTIC
3.1.5	WELDED WIRE REINFORCING: PROVIDE WELDED WIRE REINFORCING IN ACCOR THE DESIGN CRITERIA. WELDED WIRE REINFORCING SHALL BE FLAT SHEET LAPPED 6" MINIMUM AND POSITIONED AT MID-HEIGHT OF THE SLAB THICKN NOTED OTHERWISE.	S ONLY,
3.1.6	SYNTHETIC FIBER REINFORCING: PROVIDE SYNTHETIC FIBER REINFORCING WITH THE PROJECT SPECIFICATIONS AT THE DOSAGE RATE INDICATED ON T	
3.1.7	BAR REINFORCING: PROVIDE BAR REINFORCING IN ACCORDANCE WITH THE D CRITERIA. WHEN BAR REINFORCING IS CALLED FOR IN A CERTAIN PORTION BUILDING, IT SHALL BE DUPLICATED IN SIMILAR PORTIONS OF THE BUILD NOTED OTHERWISE.	OF THE
3.1.8	MINIMUM COVER: INSTALL BAR REINFORCING WITH THE FOLLOWING MINIMUM A GREATER COVER IS REQUIRED DUE TO FIRE PROTECTION:	COVER UNLESS
	POSITION	DISTANCE
	CONCRETE CAST AGAINST AND PERMANENTLY IN CONTACT WITH EARTH CONCRETE EXPOSED TO EARTH AND WEATHER	3"
	#5 BAR AND SMALLER #6 BAR AND LARGER	1 1/2" 2"
	CONCRETE NOT EXPOSED TO EARTH AND WEATHER OR IN CONTACT WITH GROUND:	
	SLABS, WALLS, AND JOISTS #11 BAR AND SMALLER	3/4"
	BEAMS AND COLUMNS #11 BAR AND SMALLER	1 1/2"
3.1.9	DEVELOPMENT: THE MINIMUM DEVELOPMENT LENGTH OF NON-CONTINUOUS BAR SHALL BE DETERMINED BY CURRENT ACI-318 EQUATIONS WITH CORRESPONDI APPLICABLE TO THE PROJECT CONDITIONS. TERMINATE BARS WITH A STAND WITH ACI-318 IF REQUIRED DEVELOPMENT LENGTH CAN NOT BE OBTAINED.	NG VARIABLES
3.1.10	MINIMUM LAP SPLICE LENGTH OF CONTINUOUS BAR REINFORCING SHALL BE CURRENT AGI-318 EQUATIONS WITH CORRESPONDING VARIABLES APPLICABLE CONDITIONS. IN GROUPS OF PARALLEL BARS, LAP SPLICES SHALL BE STAG COUPLERS MAY BE USED WITH APPROVAL. PRODUCT DATA, INCLUDING CURRE MECHANICAL COUPLERS, SHALL BE SUBMITTED FOR APPROVAL BY THE STRUC RECORD PRIOR TO USE. COUPLERS MUST BE CAPABLE OF DEVELOPING 125% OF THE SPLICED BARS.	TO THE PROJECT GERED. MECHANICAL NT ICC REPORT FOR TURAL ENGINEER OF
3.1.11	HOT WEATHER CONCRETING: FOLLOW ACI 305 "GUIDE TO HOT WEATHER CONC DAILY TEMPERATURE EXCEEDS 85°F, OR RAPID DRYING CONDITIONS EXIST; RATE GREATER THAN OR EQUAL TO 0.2 LB/SF/HR.	
3.1.12	COLD WEATHER CONCRETING: FOLLOW ACI 306 "GUIDE TO COLD WEATHER CO CONDITIONS OR MEAN DAILY TEMPERATURE FALLS BELOW 40°F.	NCRETING" WHEN FREEZI
3.1.13	SLABS-ON-GRADE: MAY BE POURED AS A CONTINUOUS SCREEDED POUR WITH IN BOTH DIRECTIONS. SAW CUTS TO BE MADE WITHIN 8 HOURS OF POUR A FURTHER APART THAN DETAILED ON THESE DRAWINGS. COORDINATE JOINT L WITH ARCHITECT PRIOR TO SLAB POURS.	ND SHALL BE SPACED NO
3.1.14	WALLS: MAXIMUM POUR LENGTH 100 FT BETWEEN FORMED CONSTRUCTION JOI EXPOSED TO VIEW, PROVIDE INTERMEDIATE CONTROL JOINTS NO GREATER T CENTER. JOINTS SHOULD ALIGN WITH BUILDING CONTROL JOINTS WHEN PRE COORDINATED WITH ARCHITECTURAL DRAWINGS.	HAN 30 FT ON
3.1.15	OPENINGS: CONTRACTOR TO PROVIDE AND COORDINATE WITH ALL OTHER TRA AND LOCATIONS OF ANY AND ALL OPENINGS, SLEEVES, ETC. OCCURRING IN	

2.1 EARTHWORK:

		01 / 11 /		OFLIGIN	.uo, o
	FOOTINGS, AND	FLOORS.	SLEEVE	LAYOUT	'S SHA
	CONSTRUCTION.				
3.1.16	BOND BREAKER:	PROVIDE	BOND B	REAKER	MATER
	OTHER VERTICAL	_ SURFACI	ES.		

3.1.17 PROVIDE DIAGONAL REINFORCING BARS AT REENTRANT CORNERS IN ALL SLABS-ON-GRADE AND ELEVATED SLABS, AT CORNER OF OPENINGS IN WALLS AND SLABS, AND AT STEEL COLUMNS PENETRATING SLABS PER DETAILS IN THIS DRAWING SET.


AL REPORT AND BE THOROUGHLY FAMILIAR WITH VEN THEREIN. ALL SUBGRADE PREPARATIONS, STRUCTION SHALL BE PERFORMED IN STRICT S AND THE GEOTECHNICAL REPORT AND SHALL PROJECT'S GEOTECHNICAL ENGINEER OF RECORD STRUCTION. L AND TOPSOIL SHALL BE EXCAVATED BELOW


IN CONTACT WITH EARTH	3"
	1 1/2"
	2"
THER OR IN CONTACT	
	3/4"
	1 1/2"

"GUIDE TO COLD WEATHER CONCRETING" WHEN FREEZING LS BELOW 40°F. NUOUS SCREEDED POUR WITH SAW CUT CONTROL JOINTS WITHIN 8 HOURS OF POUR AND SHALL BE SPACED NO

DINATE WITH ALL OTHER TRADES FOR SIZE SLEEVES. ETC. OCCURRING IN WALLS. HALL BE SUBMITTED FOR APPROVAL PRIOR TO

ERIAL WHERE SLABS ABUT WALLS, COLUMNS, AND

I	WALL DETAILS

Revis	ions and Is	sue Dates
Rev #	Date	Description
AE P	roject Numł	ber
	5-089	
lssue	Date	
5/5	/2025	
Issue		
		JCTION
DO	CUME	NTS
	t Name	NOTEO
		_ NOTES
AN	D FOU	NDATION
PL/	۹N	
Shee	t Number	
C	101	

124

Seal / Signature

