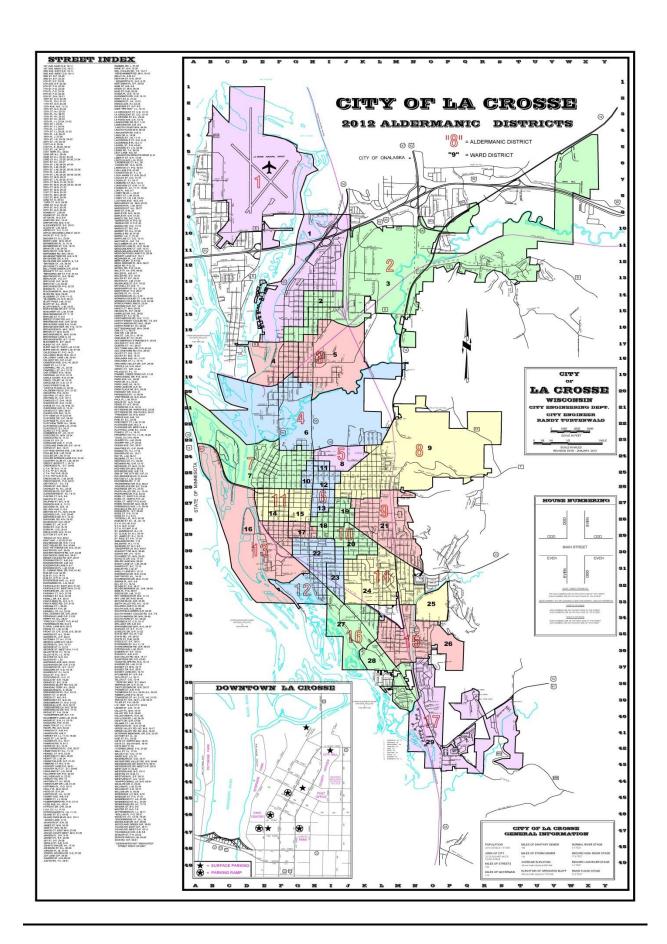
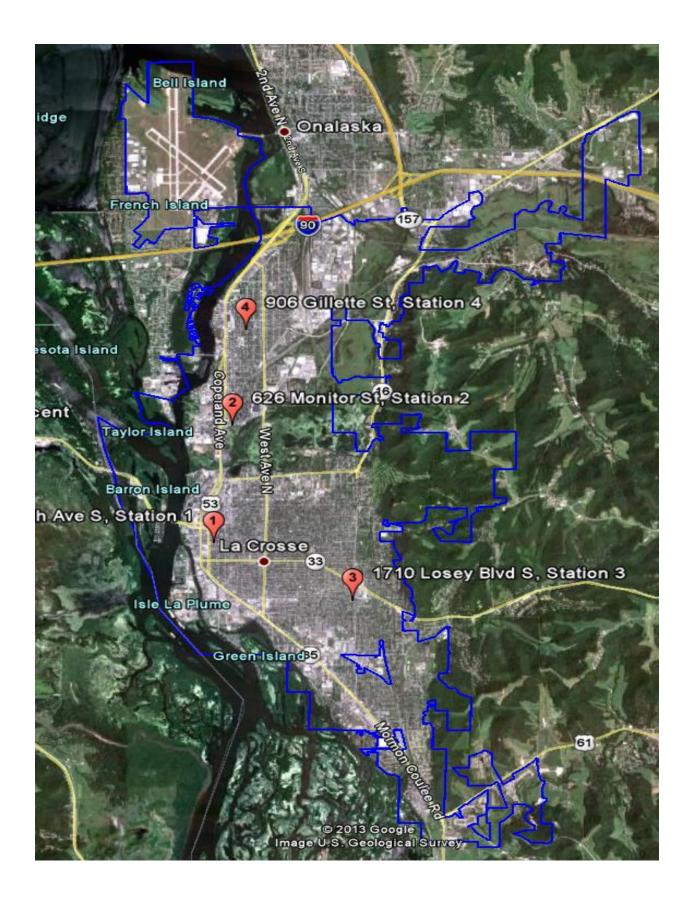
La Crosse Fire Department Standards of Cover

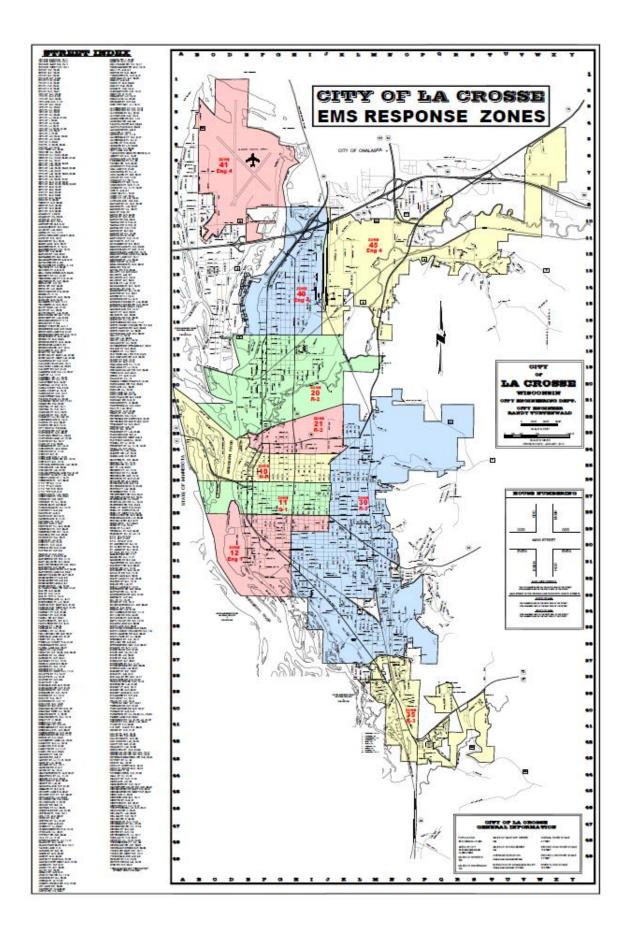


Appendixes

A - I


Standards of Cover

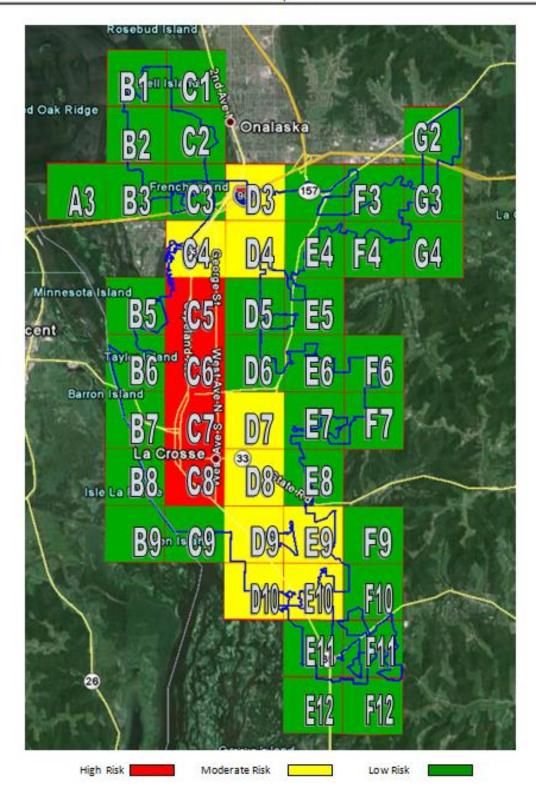
Appendix A
Council Member
Districts


Standards of Cover

Appendix B Fire Station Locations

Standards of Cover

Appendix C
Response Zone Map



Standards of Cover

Appendix D
Planning Zones

City of La Crosse Fire Department

Fire Risk Response

The following is an explanation of the planning zone analysis (Appendix J):

District Overview: a brief explanation of the; planning zone location within the city, planning zone occupancy, planning zone risk assessment scores, and special hazards within the planning zone.

Special Hazards: Identified building name, address, associated risk, fire flow, and risk assessment score.

Inspected Occupancy Risk Assessment: Inspected occupancy risk assessment scores and percentages. These are all occupancies within the planning zone that the agency inspects on a semi-annual basis.

Occupancy Analysis: Classification of planning zone occupancy and percentages. These are all occupancies within the planning zone, both inspected properties and residential properties.

Emergency Call History: Emergency call history within the planning zone, analyzed by call type.

90th **Percent Priority Fractile Total Response Time for Emergency Responses:** 90th percent priority fractile total response times, analyzed by call type.

Fire Flow Analysis: Fire flow analysis and percentages within the planning zone.

Standards of Cover

Appendix E
Fire Flow Analysis

	Inspected Pi	roperty Fire Flo	w Analysis	
Planning Gird	Low <1000	Moderate 1000-3000	High>4000	Special>4000
A3	0	1	0	0
B1	0	0	0	0
B2	6	23	0	0
В3	0	9	0	0
B5	1	0	0	0
В6	3	2	0	0
В7	2	4	1	0
B8	8	1	0	0
В9	0	0	0	0
C1	0	0	0	0
C2	0	2	0	0
C3	3	36	0	0
C4	18	130	1	0
C5	23	300	1	0
C6	28	167	3	1
C7	85	723	6	0

Planning Gird	Low <1000	Moderate 1000-3000	High>4000	Special>4000
C8	46	263	2	0
C9	8	10	0	0
D3	21	46	1	0
D4	11	71	0	0
D5	11	20	1	1
D6	3	18	1	0
D7	9	97	8	3
D8	14	119	2	0
D9	28	121	5	1
D10	30	76	2	1
E3	0	2	0	0
E4	0	10	0	0
E5	0	1	0	0
E6	0	1	0	0
E7	0	3	0	0
E8	0	11	0	0
E9	2	62	0	0
E10	20	50	0	0

Planning Gird	Low <1000	Moderate 1000-3000	High>4000	Special>4000
E11	2	25	1	1
E12	0	0	0	0
F3	0	1	0	0
F4	0	6	1	0
F6	0	0	0	0
F7	0	0	0	0
F9	0	1	0	0
F10	0	0	0	0
F11	0	18	0	0
F12	0	0	0	0
G2	8	6	0	0
G3	0	0	0	0
G4	0	0	0	0

Standards of Cover

Appendix F
Summary of Risk
Assessment Process

The following is a summary of the fourteen categories of data that were entered into Zoll Fire Records Management System(RMS):

Age of Building:

The year the building was constructed

Construction Type:

Construction type of building based on NFPA code classifications

Area of Building:

Main floor area of building

Height of Building:

Stories above grade

Density of Building:

Square footage of building compared to square footage of the lot

Separation Distance:

Distance in feet, between building and nearest building

Built in fire protection systems – detectors:

Level of fire detection systems

Built in fire protection systems – automatic extinguisher systems:

Level of automatic extinguishing systems

Fire flow requirements:

Amount of water necessary to control the emergency, based on structure, contents and exposures

Exposures:

The number of exposures as defined by NFPA 1142, "any building over 100 square feet within 50 feet of the building"

Hazards in Building:

Building contains a reportable quantity of hazardous materials

Access to Building:

The ability of firefighters to get personnel and apparatus to the all sides of the building to attack a fire and conduct a rescue

Life Safety/Occupancy:

Life safety/occupancy classification of the building; unoccupied, single family, group, assembly, or mass

Property Value of Building:

Estimated property value of building

Target Hazard:

Identified high hazard occupancy not reflected in all other categories. Example: Hydrite Chemical.

SCORING SYSTEM: A risk assessment scoring system was created using NFIRS 5ALIVE software. Points were assigned to each of the fourteen categories:

Year built

- 1 1985 and after
- 2 1960 1984
- 3 1935 1959
- 4 1910 1934
- 5 Prior to 1910

Construction type

- 1 type I fire resistive
- 2 type II non combustible
- 3 4 type IV heavy timber
- 4 3 type III ordinary
- 5 type V wood frame, 9 not classified, U undetermined

Main floor area

- $1 \quad 0 7,500$
- 2 7,501 15,000
- 3 15,001 25,000
- 4 25,001 40,000
- 5 40,000 and up

Additional stories above grade

- 1 1
- 2 2
- 3 3
- 20 4
- 20 5 and up

Density

- 1 .00 .19
- 2 .20 .39
- 3 .40 .59
- 4 .60 .79
- 5 .80 1

Separation Distance

- 1 100 and up
- $2 \qquad 61 99$
- 3 31 60
- 4 11 30
- $5 \quad 0 10$

Built in fire protection systems – detector type

- 1 01 fire alarm system, 4 sprinkler, water flow detection
- 5 more than one type
- 3 1 -smoke, 2heat, 3combination, 0detector other
- 4 Blank
- 5 U1 none, U undetermined

Built in fire protection systems – automatic extinguisher system

- 1 1 7
- 2 0 special hazard system
- 3 01 kitchen wet chemical system
- 4 Blank
- 5 U1 none, U undetermined

Fire Flow

- $1 \quad 0 1000$
- 2 1,001 2,000
- $3 \quad 2,001 3,000$
- 4 3,001 4,000
- 5 4,001 and up

Exposures

- 1 0
- 2 1
- 3 2
- 4 3
- 5 4 or more

Hazards

- 1 No
- 5 Yes

Access

- 1 All sides
- 2 3 sides
- 3 2 sides
- 4 1 side
- 5 None

Life safety factors

- 1 Unoccupied
- 2 Single family
- 3 Group
- 4 Assembly
- 5 Mass

Estimated property value

- 1 0 250,00
- 2 250,001 500,000
- 3 500,001 750,000
- 4 750,001 1,000,000
- 5 1,000,00 and up

Target Hazard

- 0 No
- 20 Yes

Total Scores:

Low < 19 Moderate 19-44 High 45-69

Maximum > 69

Maximum Risk:

This is the highest degree of risk. Maximum risk properties are defined as properties presenting a high risk of life loss, loss of economic values to the community, or large loss damage to the property. For a building to be classified a maximum risk it must receive a score of greater than 69. 0.3 % (9) of the inspected buildings in La Crosse scored at a maximum risk.

High Risk:

The next highest degree of risk is the high risk category. High risk properties are defined as properties presenting a substantial risk of life loss, a severe financial impact on the community, or unusual potential damage to property. For a building to be classified a high risk it must score a value between 45 and 69. 15.4 % (459) of the inspected buildings in La Crosse scored at a high risk.

Moderate Risk:

The next highest degree of risk is the moderate risk category. Moderate risk properties are defined as properties of average size, where the risk of life loss or damage to property in the event of a fire in a single occupancy is usually limited to the occupants. For a building to be classified a moderate risk it must score a value between 19 and 44. 83.9 % (2,497) of the inspected buildings in La Crosse scored at a moderate risk.

Low Risk:

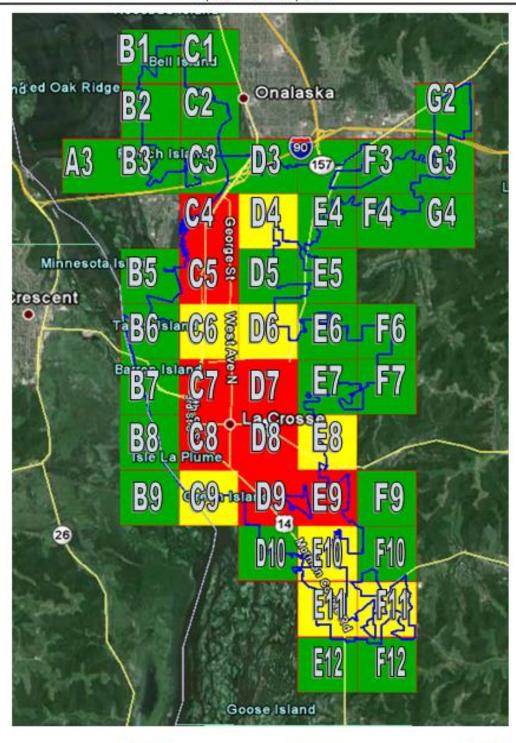
The lowest degree of risk is the low risk category. Low risk properties are defined as properties that are small non-commercial structures that are remote from other buildings, such as detached residential garages and out buildings. For a building to be classified a low risk it must score a value of less than 19. 0.3 % (11) of the inspected buildings in La Crosse scored at a low risk. The table below shows all inspected properties in the city.

Inspected Properties in La Crosse

Category	Score	Total	Percent
Maximum	> 69	9	0.3
High	45-69	459	15.4
Moderate	19-44	2497	84
Low	< 19	11	0.3

The City of La Crosse has 12,217 residential properties that are two unit apartments or single family properties. These 12, 217 residential properties fall within the moderate risk category. The table below shows all properties in La Crosse, including these 12,217 residential properties.

Inspected and Residential Properties in La Crosse


Category	Score	Total	Percent
Maximum	> 69	9	0.05
High	45-69	459	3
Moderate	19-44	14714	96.9
Low	< 19	11	0.05

Standards of Cover

Appendix G Population Map

City of La Crosse Fire Department

Population Risk Response

>2500 High Risk 500-2500Moderate Risk

< 500 Low Risk

Standards of Cover

Appendix H
GIS Analysis

-Analysis Overview

The goal of this analysis is to provide the following deliverables:

- -1 overall overview initial response map of the city with the 4 current stations
- -1 overall overview initial response map of the city with the 4 current stations plus planned station at Hwy 14/61 & MM
- -1 initial response map per station including planned station at Hwy 14/61 & MM
- -1 analysis map of estimated best locations for station distribution for initial response
- -If time allows we will assemble 1 overall overview response map of the city with the 4 current stations taking into account time needed for a full response (ie. all apparatus needed.) This will be done for as many types of response as time allows.

Further notes:

- -All response maps will show 4 & 8 minute estimated response times
- -We will take the existing stop signs into account and try to apply a standard lesser barrier where those signs may be missing.
- -We will take into account railroad crossing barriers.
- -When all stop signs are complete we can complete a new updated set of maps under a new contract.
- -All maps will be estimates based on available data and not fact.

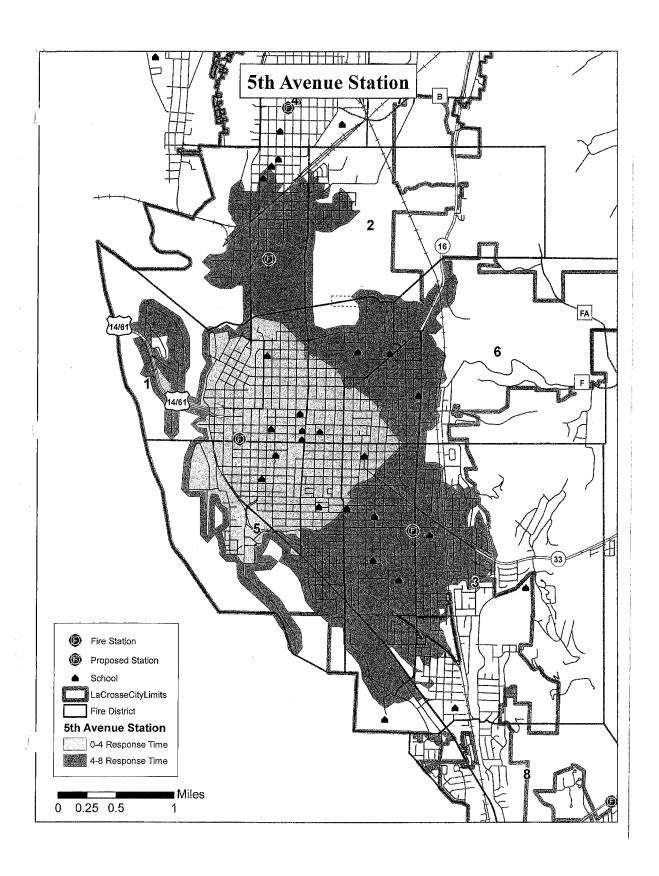
-Analysis Process

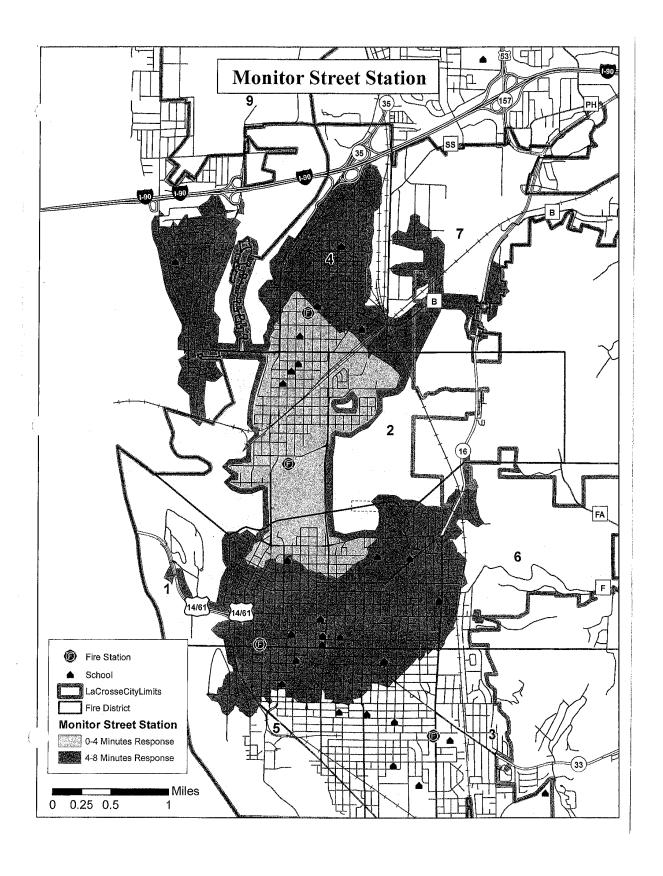
An analysis network was built using ArcGIS 9.2 that models navigation on the streets of La Crosse. Street direction was modeled. All one-way streets and divided lanes present in the provided data were modeled as traversable only under the appropriate conditions. Road elevation (overpasses/bridges) and connectivity (turn restrictions) were also modeled and implemented when the appropriate conditions in the data were met. Speed limits were modeled as an impedance value for traversing the network. Speed limit data was provided for a portion of the city, the speed limit was modeled at the appropriate values where the data was provided. A default value of 25 mph was implemented for all other streets. Street lights, stop signs, and yield signs were modeled in the best possible manner given the provided data. These traffic intersections were modeled with impedance values that are appended to the traversal time of the route given the manner in which the route is being traversed. The below table (fig 1) explains the impedance values that were used. All intersections (not just the ones that do not involve a traffic signal) have a global impedance value assigned to it that varies given the nature of how the intersection is being traversed (i.e. right turn, left turn, u-turn etc.). The railroad overheads were modeled by placing barriers on the roads that should be avoided due to railroad tracks. These points in the road are made non-traversable in the analysis.

The process of this analysis involved building a GIS network that implements the above rules and impedance values. Once the network is properly modeled, it can be used to perform an analysis such as identifying the service area of given points.

Fig. 1

Turn Type	Impedance Value (in minutes)
Yield (left turn)	0.15
Yield (right turn)	0.05
Yield (straight)	0.1
Yield (u turn)	0.15
Stop Light (left turn)	0.33
Stop Light (right turn)	0.1
Stop Light (straight turn)	0.33
Stop Light (u turn)	0.33
Stop (left turn)	0.16666
Stop (right turn)	0.083
Stop (straight turn)	0.125
Stop (u turn)	0.16666


Work done to clean data


- Conflation of stop sign data and road data was required. We were unable to systematically snap all stop signs to the appropriate road. Furthermore, digitizing direction of roads was not consistent or accurate so assigning a To-From / From-To value to identify location of a stop sign could not be automated. All stop signs had to be either manually verified as correct or manually edited.
- Conflation of stop light data and road data was required. All stop lights had to be either manually verified as correct or manually edited for the same reasons as above.
- Conflation of yield data and road data was required. All yields had to be either manually verified as correct or manually edited for the same reasons as above.
- Road digitizing direction (direction of lines) was not consistently accurate needed to be manually corrected and analyzed to implement one way roads appropriately.
- Barrier information had to be manually extracted from railroad overhead descriptions.
- In some cases, ramps were missing and did not allow for vehicle access where it should be available. These ramps were digitized from aerial photographs.
- In some cases network topology had small breaks or line ends were inappropriately snapped to line vertices when they should be snapped to line end points (and vice versa). This was also the cause of errors in lane elevation which is used to model overpasses and highway intersections.
- Speed limit data was provided for only the city and was spatially joined to the complete county network a default value was systematically applied to the streets that did not receive a speed limit from the spatial join. It is a requirement that all roads have a speed limit value.

Analysis Restraints

There are some restraints that limited the network's ability to model reality:

- -Incomplete / confused data for several of the layers, we went in and cleaned up the data but there was only so much we could do here. (See the descriptions above).
- -Speed limit data was only available in the city limits; having speed limits for the entire county dataset would increase accuracy.
- -Stop & yield signs were only available for portions of the city; having complete datasets for the county dataset would increase accuracy.
- -Stop sign, yield sign, & stop light data was not available outside city limits; having complete datasets for the county dataset would increase accuracy.
- -Modeling impedance values as expected, the variables used for implementing impedance ($\mathbf{fig}\ I$) are an estimation of what would happen in reality. The above values could be a better simulation of reality if research of each individual intersection in La Crosse were available.
- Traffic density per road and per time of day could be implemented to better simulate reality. These factors have been left out of the analysis because the data is not available.

Standards of Cover

Appendix I Comparable City Data

Wisconsin Fire Department Staffing and Spending

\$106.03	\$4,561,415	1.56	67	6.07	အ	18.2	43021	*Fond du Lac
\$121.23	\$12,028,021	1.54	153	4.00	6	24	99218	Kenosha
\$133.87	52,445,488	1.37	25	2,35	2	4.7	18267	Gudahy ·
\$138.77	\$3,780,545	1.36	37	18.47	3	55.4	27244	Superior
\$140,53	\$10,205,362	1.27	92	3.57	6	21.4	72623	*Appleton
\$147.51	\$7,270,513	1.58	78	2.82	G	14.1	49288	*Sheboygan
\$150.45	\$2,876,341	1.88	36	12.70	1	12.7	19118	Marshfield
\$154.40	\$9,816,053	1.45	92	5.62	5	28.1	63575	*Janesville
\$156.51	\$10,311,300	1.40	92	5.40	6	32,4	65883	*Eau Claire
\$158.93	\$5,836,031	1.47	54	5.80	2	11.6	36720	Greenfield
\$163.16	\$10,782,100	1.56	103	4,07	6	24.4	66083	*Oshkosh
\$163.26	\$6,384,621	1.51	59	5.93	ω		39106	*Wausau
\$163.54	\$11,565,567	1.46	103	5.44	5	27.2	70718	*Waukesha
\$164.06	\$5,534,577	1.69	57	4.30	4		33736	Manitowoc
\$165.92	\$5,882,112	1.24	44	11.57	8	34.7	35451	Franklin
\$167.81	\$99,820,902	1.48	881	2.69	36		594833	Milwaukee
\$169.87	\$7,474,195	1.52	. 67	ಬ .83	4	15.3	iasha 43999	Neenah/Mer
\$171.59	\$4,239,190	1.74	43	16.23	3		24705	Caledonia
\$172.11	\$1,887,672	1.46	16	8.00	1			Marinette
\$176.57	\$41,176,979	1.57	366	7.06	12		233209	Madison
\$178.95	\$6,165,100	1.51	52	9.53	ω		34451	Oak Creek
\$185.45	\$4,954,681	1.46	39	8.10	2	16.2		Stevens Point
\$187.87	\$2,566,558	1.83	25	5.70	2		ls - 13661	Chippewa Fal
\$192.28	\$20,008,300	1.74	181	7.76	7		104057	Green Bay
\$194.11	\$7,360,681	1.50	57	9.07	نن	27.2	37920	*Brookfield
\$194.33	\$9,973,050	1.85	95	5.55	. 4		51320	*La Crosse
\$196,43	\$15,490,746	1.80	142	3.12	6	18.7	78860	Racine
\$198.21	\$13,478,447	1.54	105	5.00	ഗ	25		North Shore
\$200.22	\$3,677,529	1.74	32	7,05	, i,	14,1	ipids 18367	Wisconsin Rapic
\$205.38	\$1,601,534	2.56	20	7.90	1			Rhinelander
\$214.04	\$12,930,600	1.80		4.70	w		60411	West Allis
\$219.37	\$8,109,192	1.76	65	5.47	ω	16.4	36966	*Beloit
\$233,87	\$2,259,392	2.38	23	3.75	2		1996	Merrill
\$284.22	,186,741	2.39	111	4.40	ω	13.2	46396	*Wauwatosa
er Capita	Budget P	1000 population	FF's	# of St Sta/sq mi	# of St S	Sq. Miles	Population	
Expenditures	er.	Firefighters/	Authorized					
	•			•				

^{*}Comparable Cities Identified by Council Resolution

Individuals and Families Below the Poverty Level 2005-2009 (U.S. Census Bureau, n.d.)

City	Individuals Below the Poverty	Families Below the Poverty
	<u>Level</u>	<u>Level</u>
Stevens Point	26.2%	8.6%
*La Crosse	25.2%	13.3%
Milwaukee	24.3%	19.9%
*Beloit	19.5%	16.8%
Madison	19.4%	8.1%
*Eau Claire	18.7%	9.0%
Marinette	18.7%	16.4%
Rhinelander	18.3%	15.8%
Racine	17.7%	13.6%
Superior	15.7%	12.2%
Green Bay	15.5%	11.4%
Kenosha	15.0%	10.9%
*Oshkosh	14.5%	8.1%
Merrill	14.4%	13.3%
*Wausau	12.4%	8.4%
Cudahy	12.2%	8.6%
West Allis	11.8%	8.7%
*Fond du Lac	11.6%	8.1%
Wisconsin Rapids	11.4%	10.3%
*Sheboygan	11.3%	8.8%
Chippewa Falls	11.0%	9.4%
*Janesville	11.0%	8.6%
*Appleton	10.3%	7.9%
Manitowoc	10.0%	6.2%
Marshfield	8.8%	3.6%
*Waukesha	8.8%	6.1%
Caledonia	8.2%	1.6%
Oak Creek	6.1%	5.0%
Greenfield	5.2%	2.0%
*Wauwatosa	5.0%	2.0%
Franklin	4.1%	2.9%
*Brookfield	2.6%	1.6%

^{*}Comparable Cities Identified by Council Resolution

The Influence that Poverty has on Fire Rates

- Average fire rates 2-4 times higher in census tracts with high levels of poverty (Karter and Donner, 1978).
- Strong negative relationship between income and fire rates (Gunther, 1981).
- Poorest groups of neighborhoods have 14 times the number of suspicious fires (Gunther, 1981).
- Poorest groups of neighborhoods 14 times more likely to have children start a fire (Gunther, 1981).
- Poorest groups of neighborhoods 8 times more likely to have a fire started by careless smoking (Gunther, 1981).

The Influence that Rentals have on Fire Rates

- A lower rate of owner-occupied homes related to an increased fire risk (Munson and Oates, 1987).
- Two times more likely to have a fire in a rental (Karter and Donner, 1978).

Reasons why Poverty and Rentals Increase Fire Rates

- Housing Quality
 - Withdrawal of routine maintenance services erodes the quality of housing units (USFA, 1997).
 - Electrical wiring not designed to carry the load placed on it (Jennings, 1996).
 - Risk increases when households try to compensate for inadequate heating/cooling systems (Jennings, 1996).
- Smoke Detectors
 - Older structures less likely to have smoke detectors (USFA, 1997).
 - People living in poverty do not have the financial resources to invest in fire safety (Munson and Oates, 1987).
- Children are more likely to be left alone (Kraizer et al, 1990).
- Increased levels of alcohol and drug abuse (USFA, 1997).

				.,																						
Madison	Kenosha	Superior	Rhinelander	Appleton	Fond du Lac	Brookfield	North Shore	Milwaukee	Manitowoc	Chippewa Falls	West Allis	Green Bay	Merrill	Racine	Wauwatosa	Wausau	Waukesha	Sheboygan	Oshkosh	La Crosse	Janesville	Eau Claire	Beloit	city	Ç.	-
			7.9	24.9	20.17	26.80	25.00	96.60	17.20	11.40	11.40	46.00	8.24	18.70	13.07	19.20	25.11	15.00	24.89	22.20	33.60	34.00	17.00	Miles	Square	
Alarm	3 Additional Personnel for 2nd		8,210	72,563	43,600	39,600	66,000	594,833	34,700	13,470	60,600	104,000	10,130	80,100	45,800	40,700	69,100	50,400	66,080	51,900	63,600	66,149	37,100	Estimation	2010 Population	Geographical Info
	nel for 2nd		Н	6	ω	з	5	36	4	2	3	7	2	6	3	ω	5	5	6	4	5	6	3	Stations	Fire	ical Info
			7.9	4.15	6.72	8.93	5.00	2.68	4.30	5.70	3.80	6.57	4.12	3.12	4.36	6.40	5.02	3.00	4.15	5.55	6.72	5.67	5.67	Per Station	Square Miles	
			20	98	67	60	113	1027	57	27	107	186	23	144	99	60	107	79.5	108	95	92.75	94	65.75	Personnel	Total	
			2.44	1,35	1.54	1.52	1.71	1.73	1.64	2.01	1.77	1.79	2.28	1.80	2.16	1.49	1.55	1.58	1.64	1.83	1.46	1.42	1.77	Staffing	Per Capita	
			2	13	7	5	8		15	3	∞	13	2	12	8	5	10	∞	7	7	7	8	5	Personnel	Day	Personnel
		t	18	85	60	55	105	810	51	24	99	172	21	132	102	54	96	69	96	88	87	86	60	Personnel	Shift	
		,	7	17	17	16	21	14+	12	17	19	14	9	14	15	12	21	$12 + 4^3$	17	14	14	18		to Fire	# of FFs	

Equipment

Engines Rescues

6 4

4

ω

w

See List 2

ω

	Madison	Kenosha	Superior	Rhinelander	Appleton	Fond du Lac	Brookfield	North Shore	Milwaukee	Manitowoc	Chippewa Falls	West Allis	Green Bay	Merrill	Racine	Wauwatosa	Wausau	Waukesha	Sheboygan	Oshkosh	La Crosse	Janesville	Eau Claire	Beloit	City	
																									4	
				Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes ¹	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes¹	Water Rescue	
		Ē		Yes	Yes	Yes	Yes	Yes	Yes	yes	Yes	Yes	Yes	Yes	Yes	Yes	No.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Technical Rescue	
2 County I avail b	Surface Only			No²	Yes	Yes	No²	No	Yes	Yes	No ²	No ²	No ²	No	Yes	No ²	Yes	No ²	No ²	Yes	Yes	No ²	Yes	No ²	Haz Mat Team	
5	₹			Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	High Angle Rescue	1000
				Paramedic	BLS	Paramedic	Paramedic	BLS & ALA A	Paramedic	Paramedic	BLS & ALS A	Paramedic	Paramedic	Paramedic	Paramedic	BLS & ALSA	Paramedic	Paramedic	Paramedic	Paramedic	EMT	Paramedic	Paramedic	Paramedic	EMS Services	
				Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Ambulance Service	
				.1	ш	2	L	2		Ľ	ы	ъ	3	1	3	2	1	2	1	2	3	з	2	1	Quints	

³ Surface Only ² County Level B

8 2

4 8

4

ω

2

2 6

4

6

σωω

10

Madison	Kenosha	Rhinelander	Appleton	Fond du Lac	Brookfield	North Shore	Milwaukee	Manitowoc	Chippewa Falls	West Allis	Green Bay	Merrill	Racine	Wauwatosa	Wausau	Waukesha	Sheboygan	Oshkosh	La Crosse	Janesville	Eau Claire	Beloit	City
	•		1396	2605	1108	1827	13903	500	669	172	2584	176	898	1671	1333	1128	917	752	1250	1324	157	-	# of calls (Primary City Only - Fire)
** Manitowoc cove	* Chippewa Falls res		2128	4172	2092	4343	26128	5000**	2465*	6456	7182	1577	8237	3473	4161	4536	2758	7222	3340	1978	6010		# of calls (Primary City Only - EMS)
** Manitowoc covers 100 sq. miles in EMS coverage	* Chippewa Falls responds to 3 townships as well		3524	6777	3200	6170	40031	5650	3134	7818	9766	1753	9135	5144	5494	5664	3675	7977	4590	3302	6167	0	# of calls (Primary City Only - Total)
1S coverage	as well	0		3	6			2	0	1	4	0		2	2	2	2	2	3	1	3 .	1	# of Colleges / Universities
									0					1,500	3,100	3,400	730	13,100	15,000	950	14,000	2,000	# of Students in Colleges / Universities
	÷	۲.,		2	1	1		2	1	2	4	1	2	3	1	ω	2	2	2	1	2	1	# of Hospitals

						_		1		1			_	_				Tio						
Madison	Kenosha	Superior	Rhinelander	Appleton	Fond du Lac	Brookfield	North Shore	Milwaukee	Manitowoc	Chippewa Falls	West Allis	Green Bay	Merrill	Racine	Wauwatosa	Wausau	Waukesha	Sheboygan	Oshkosh	La Crosse	Janesville	Eau Claire	Beloit	City
			N/A	\$1,200,000.00	N/A	\$738,000.00	\$15,000,000.00		\$500,000.00	\$175,000.00	\$797,251.00	\$2,500,000.00			\$550,000.00	N/A	N/A	\$450,000.00	\$900,000.00		N/A	\$1,487,766.00	\$1,332,272.00	Annual Property Loss
				Not Calculated		Not Calculated	Not Calculated	Not Calculated	Not Calculated	Not Calculated		Not Calculated	Not Calculated	Not Calculated	Not Calculated	N/A	Not Calculated	Not Calculated	N/A	4:14	Not Calculated	7.91	A/N	90% Fractile Response Time(All Calls)
			3:30	. 4:40	6:21	5:40	5:30	> 7:00 90%	>5:00 90%	4:42	>5:00 91%		2:43	6:13	Not Calculated	> 5:00	5:34	3:00	4:00	2:39	Not Calculated	5.13	5:00	Avg Response Time (All Calls)
			Υ	Υ	Y	γ	Y	Υ	Y	Υ	Υ	Υ	4	Υ	~	Y (Airport)	Υ	~	z	N	Υ	Y	Y (Airport)	Mutual Aid?
			720		2,615	5,000	2700+		1,590	1,600	4,300	5,000	1,126	3,200	6,800	3,823	5,500	3,800	4,000	5,412	6,000	6,029	4,800	# of Inspections (Annually)
	⁴ 45,000 for Fire a				\$464,000	\$210,000	\$350,000		\$98,000	\$90,000	\$187,500	\$481,120	\$125,000	\$300,000	\$304,803	\$120,000	\$257,000	45,000 ÷ 50,000 ⁴	\$206,000	\$197,000	\$232,921	\$248,000	\$326,000	Budgeted Overtime (2009)
	and 50,000 for EMS			لبسسا			la-ma-		L		L	Languar						L p.,						
	S																							

Housi
Вu
souce-
www.maps
_
stats

Appleton Rhinelander Superior Kenosha Madison

59.3%	68.7%	61.8%	85.0%	71.5%	45.4%	67.7%	58.3%	58.1%	56.0%	65.4%	60.4%	67.8%	61.8%	56.6%	61.2%	57.6%	51.0%	68.2%	57.3%	62.0%	Owner Occupied	(%) Housing
40.7%	31.3%	38.2%	15.0%	28.4%	54.6%	32.3%	41.7%	41.9%	44.0%	34.6%	39.6%	32.2%	38.2%	43.4%	38.8%	42.4%	49.0%	31.8%	42.7%	38.0%	Rental	lg (%)
1,907	18,455	10,270	12,227	19,043	232,188	9,626	3,284	16,031	23,281	2,732	18,972	13,819	9,676	14,508	12,698	13,851	10,746	16,289	13,759	8,277	Owner Occupied	Housin
1,307	8,409	6,368	2,156	7,569	126,953	4,609	2,354	11,573	18,310	1,451	12,477	6,569	6,002	11,155	8,081	10,231	10,364	7,605	10,257	5,093	Rentals	Housing (Actual Numbers)
3,214	26,864	16,638	14,383	26,612	232,188	14,235	5,638	27,604	41,591	4,183	31,449	20,388	15,678	25,663	20,779	24,082	21,110	23,894	24,016	13,370	Total	nbers)

Janesville La Crosse Oshkosh

Beloit Eau Claire

City

Sheboygan
Waukesha
Wausau
Wauwatosa
Racine
Merrill
Green Bay
West Allis
Chippewa Falls
Manitowoc
Milwaukee
North Shore
Brookfield
Fond du Lac

~	~	Υ	z	~	Y	Υ	Υ	z	z	Y	Υ	N	γ	Υ	N	Y	Υ	JFS	
~		Υ	Y	Υ	Υ	Υ	Υ	Υ	 Υ	Υ	K,1,4	K,1,3,4	Υ	K-6, 12	K,1,3,5,9	K-5	K-5	Fire Prevention K- 6	
Y		Υ	Υ	×	N	Υ	Y	Z	Υ	~	z	Z	Υ	Υ	Υ	Υ	Υ	Fire Safety House or equiv.	
Z		Υ	Z	Υ	Υ	Υ	Z	Υ	Υ	Υ	Υ	Υ	Y	Υ	4	Y	Z	Senior Citizens (Get Out and Stay Alive)	Commun
z		N	γ'	z	Z	Z	Υ	Υ	z	Υ	z	Υ	Υ	¥	z	۲	Z	Senior Citizens (Get Senior Citizens Ethnic Community Out and Stay Alive) (Disabled Program) Services / Education	Community Programs
z		N	Z	Υ	z	Z	Υ	Z	Υ	Υ	Υ	Υ	z	Y	Υ	Y	~	Ethnic Community Services / Education	

Sheboygan
Waukesha
Wausau
Wauwatosa
Racine
Merrill
Green Bay
West Allis
Chippewa Falls

Beloit Eau Claire Janesville

City

La Crosse Oshkosh

Manitowoc
Milwaukee
North Shore
Brookfield
Fond du Lac
Appleton
Rhinelander
Superior
Kenosha
Madison

Superior Kenosha Madison	Rhinelander	Fond du Lac	Brookfield	North Shore	Milwaukee	Chippewa Falls	West Allis	Green Bay	Merrill	Racine	Wauwatosa	Wausau	Waukesha	Sheboygan	Oshkosh	La Crosse	Janesville	Eau Claire	Beloit	City
	Υ	Υ		2	Z	Y	γ.	Υ	Z		Y	Υ	Υ	Z	Υ	Υ	Υ	Υ	Υ	State LPO (Underground Tank Program

ISO Comparison of Wisconsin Cities

La Crosse	2
Wauwatosa	2
Merrill	4
Beloit	3
West Allis	2
Rhinelander	5
Wisconsin Rapids	3
North Shore	2
Racine	2
Brookfield	3
Green Bay	2
Chippewa Falls	3
Stevens Point	3
Oak Creek	3
Madison	3
Marinette	3
Caledonia	4
Neenah/Menasha	2
Milwaukee	2
Franklin	4
Manitowoc	2
Waukesha	2

Wausau 3 Oshkosh 2 Greenfield 3 Eau Claire 3 Janesville 3 Marshfield 4 Sheboygan 2 Appleton 2 Superior 4 Cudahy 4 Kenosha 2 Fond du Lac 2