

62

- LOCATION OF UTILITIES, PAVED SURFACES, STORM DRAINAGE, ETC., ARE APPROXIMATE BASED ON PREVIOUS PLANS FOR CONSTRUCTION IN THIS AREA. FIELD VERIFY ALL ITEMS AND REPORT DISCREPANCIES TO ENGINEER AND/OR OWNER IMMEDIATELY UPON DISCOVERY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING THE EXACT LOCATION OF ALL EXISTING UTILITIES, WHETHER SHOWN ON THESE PLANS OR NOT, BEFORE COMMENCING WORK, AND SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE CAUSED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UTILITIES. CALL DIGGERS HOTLINE (800) 242-8511
- 2. NO WORK SHALL PROCEED UNTIL ALL UNDERGROUND UTILITIES HAVE BEEN VERIFIED WITH THE UTILITY COMPANIES.
- 3. IT SHALL BE THE CONTRACTORS RESPONSIBILITY TO ARRANGE FOR ANY NECESSARY INSPECTIONS BY LOCAL GOVERNMENT THAT MAY BE REQUIRED.
- 4. PROVIDE A MINIMUM SLOPE AWAY FROM BUILDING OF 1/2" PER FOOT UNLESS NOTED OTHERWISE.
- 5. SOIL BEARING CAPACITY HAS BEEN ASSUMED. REPORT ANY AND ALL DISCREPANCIES TO SUCH ASSUMPTIONS AS DISCOVERED DURING EXCAVATION TO ENGINEER AND/OR OWNER.
- 6. THE OWNER SHALL PROVIDE DESIGNATED SPACE ADJACENT TO THE BUILDING FOR THE COLLECTION OF RECYCLABLE WASTE MATERIALS AS PER SPS 362.0400(2)

	DRAWING INDEX
A1	UNHEATED STORAGE: PROPOSED SITE PLAN AND CODE INFO.
A2	UNHEATED STORAGE: PROPOSED FLOOR PLAN
A3	UNHEATED STORAGE: BUILDING AND WALL SECTIONS
A4	UNHEATED STORAGE: EXTERIOR ELEVATIONS
S1	UNHEATED STORAGE: FOUNDATION PLAN, DETAILS AND STRUCTURAL NOTES
S2	UNHEATED STORAGE: ROOF FRAMING PLAN
S3	UNHEATED STORAGE: WIND LOAD REPORTS
	CODE INFORMATION
	PESS & LECAL DESCRIPTION
1714 S. CITY C LA CR	16 TH STREET 9F LA CROSSE 9SSE COUNTY TAX PARCEL #17-50266-30
APPL	ICABLE CODES
CITY C (BUILI WISCO	OF LA CROSSE MUNICIPAL CODE CHAPTER 115 (ZONING) & CHAPTER 103 DINGS & BUILDING REGULATIONS) INSIN COMMERCIAL BUILDING CODE (2015 IBC W/AMENDMENTS)
ZONI	NG DISTRICT
LIGHT	INDUSTRIAL DISTRICT
UNHE CONST BUILD	<u>E OF WORK</u> ATED STORAGE IRUCT 5,239 SF BUILDING MATERIALS UNHEATED, UNATTENDED STORAGE ING
<u> </u>	JPANCY
UNHE. STORA	ATED STORAGE GE GROUP, S-1 MODERATE HAZARD STORAGE
SIZE	
UNHE	ATED STORAGE = $5,239$ SF
	OF CONSTRUCTION
FIRE	PROTECTION
NO AU	TOMATIC FIRE SPRINKLER SYSTEM
EXIT	DISTANCE
200 FE	
EXIT	DISTANCE ET

South

0)

 $\boldsymbol{\mathcal{O}}$

S

161

_ __ _

8" CONCRETE FOUNDATION WALL WITH #4'S AT 12" O.C. HORIZONTALS AND #6 VERTS AT

- 10"x 44" CONCRETE FOOTING WITH (5) #6 CONT. AND #4 TRANVERSE BARS AT 12" O.C. TOP & BOTTOM

DRAWN JAW	CHECKED	DATE JANUARY 24, 2022	SCALE AS NOTED	SHEET	A4
	JIM WEBB, PE	Engineering & Construction, LLC		1224 King Street	La Crosse, WI 54601 (608) 780-4672
NEW RUILDING FOR.	KRATT LUMBER	1714 S. 16TH STREET	LA CROSSE, WISCONSIN		UNHEATED STORAGE: EXTERIOR ELEVATIONS

DESIGN LOADS

ROOF LOADS

WIND LOADS

LIVE LOAD DEAD LOAD GROUND SNOW LOAD DEAD LOAD, TOP CHORD 10 PSF DEAD LOAD, BOTTOM CHORD 5 PSF BASIC WIND SPEED = 115 MPH EXPOSURE C RISK CATEGORY - II UNHEATED, INSULATED STRUCTURE PROCEDURES OF CONSTRUCTION SELECTED BY CONTRACTOR.

- CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS. SHOULD ANY DISCREPANCY BE FOUND, CONTRACTOR SHALL NOTIFY ENGINEER IMMEDIATELY OF THE CONDITION.
- 4. CONTRACTOR SHALL BRACE ENTIRE STRUCTURE AS REQUIRED DURING DEMOLITION AND CONSTRUCTION TO MAINTAIN STABILITY UNTIL THE STRUCTURE IS COMPLETE AND FUNCTIONING AS THE DESIGNED UNIT.
- FOUNDATIONS 5. FOUNDATION ELEVATIONS ARE SHOWN FOR BIDDING PURPOSES AND MAY VARY TO TO SUIT SUB-SURFACE SOIL CONDITION. ELEVATION AND BEARING STRATA SHALL BE APPROVED BY A GEOTECHNICAL ENGINEER PRIOR TO PLACING CONCRETE.
- 6. FOOTINGS MAY BE PLACED WITHOUT SIDE FORMS IF EXCAVATED WALLS STAND APPROXIMATELY VERTICAL.
- 7. ALL FOOTINGS SHALL BEAR ON LEVEL (WITHIN 1 IN 12) UNDISTURBED SOIL OR APPROVED ENGINEERED FILL. FOUNDATIONS HAVE BEEN DESIGNED FOR A MAXIMUM SOIL BEARING PRESSURE OF 2000 PSF
- 8. CONTRACTOR SHALL CONTACT UTILITY COMPANIES FOR LOCATING UNDERGROUND SERVICES AND IS
- COMPACTION ALL FILL MATERIALS SHALL BE APPROVED BY A GEOTECHNICAL CONSULTANT. B. FILL BELOW FOOTINGS: ENGINEERED FILL BELOW FOOTINGS: MINIMUM COMPACTION 98% STANDARD PROCTOR DENSITY AT THE OPTIMUM MOISTURE CONTENT.

CONCRETE 10. CONCRETE WORK AND TESTING SHALL CONFORM TO ALL REQUIREMENTS OF ACI 318.

- 11. CONCRETE WORK IN COLD WEATHER SHALL CONFORM TO ALL REQUIREMENTS OF ACI 306.1-90 "STANDARD SPECIFICATION FOR COLD WEATHER CONCRETING" AND ACI 306.1-90 "COLD WEATHER CONCRETING"
- 12. CONCRETE WORK IN HOT WEATHER SHALL CONFORM TO ALL REQUIREMENTS OF ACI 305R-91 "HOT WEATHER CONCRETING". THE AIR TEMPERATURE, RELATIVE HUMIDITY, CONCRETE TEMPERATURE, AND WIND VELOCITY SHALL BE ENTERED INTO NOMOGRAPH FIGURE 2.1.5 TO DETERMINE IF PRECAUTIONS AGAINST PLASTIC SHRINKAGE ARE REQUIRED.
- 13. CONCRETE MIX DESIGNS SHALL BE SUBMITTED FOR EACH TYPE OF CONCRETE TO THE STRUCTURAL ENGINEER FOR APPROVAL IN ACCORDANCE WITH ACI 318 SECTION 3.9 OR 3.10. 14. MATERIALS: (f'c BASED ON 28 DAYS UNLESS NOTED) A. CONCRETE UNLESS NOTED: f'c = 4000 PSI, NORMAL AGGREGATE.

STRUCTURAL SCHEDULE						
MARK	DESCRIPTION	REINFORCING/REMARKS				
WF-1	10" x 44" x CONT. WALL FOOTING	SEE DET. 3/A3 (TOP OF WALL = 102'-0")				
WF-2	12" x 30" x CONT. WALL FOOTING	(3) #4'S CONT. (TOP OF WALL = 100'-0")				
CF-1	8" THICK x 15" DIA.					
CF-2	12" THICK x 30" DIA.					
CF-3	12" THICK x 30" DIA.					
CF-4	14" THICK x 36" DIA.					
CF-5	12" THICK × 30" × 28"					

Wind Load Report - KRATT LUMBER UNHEATED STORAGE

1. Site & Building Data

Code Standard:

Geometry: Height Class:

Notes:

2. Parameters & Coefficients

			101100
Roof Type:	Gable	Topographic Factor (Kzt):	1.0
Wind Speed (ult):	115 mph	Directionality Factor (Kd):	.85
Exposure Category:	С	Roof Angle (θ):	18.43 deg.
Enclosure Class:	Enclosed	Mean Roof Height (h):	22.67 ft.
Building Width (W):	32 ft.	Ridge Height (hr):	25.33 ft.
Building Length (L):	98 ft.	Pos. Internal Pressure (+GCpi):	+0.18
Eave Height (he):	20 ft.	Neg. Internal Pressure (-GCpi):	-0.18
Foundation Height (hf):	0 ft.	Velocity Pressure Exp. Coeff. (Kh	n): 0.93 @ z=h
Roof Pitch:	4 /12	Velocity Pressure (qh):	26.65 psf
Eave Overhang (OHe):	0 ft.	End Zone Width (a):	3.00 ft.
Gable Overhang (OHg):	0 ft.	Zone 2/2E Dist.:	16.00 ft.
3. Design Assumption	otions and Notes	<u>4. Design Loads</u>	

4. Design Loads

Top Chord Dead Load: 7 psf Bottom Chord Dead Load: 10 psf Truss/Rafter Spacing: 96 in. o/c

4. Design Wind Pressures: MWFRS Envelope Procedure

ASCE 7-10

Regular-Shaped Bldg.

Low-Rise Building

a c	GCnf	Design Pre	essure (psf)
Surface	ССрі	(w/ +GCpi) (w/ -GCpi)
1	0.52	8.97	18.56
2	-0.69	-23.18	-13.59
3	-0.47	-17.28	-7.69
4	-0.42	-15.87	-6.27
1E	0.78	15.99	25.59
2E	-1.07	-33.31	-23.72
3E	-0.67	-22.74	-13.15
4E	-0.62	-21.27	-11.67

c) Design building for all wind directions, 4 load patterns per load case. a) Total horizontal shear shall not be less than that by neglecting roof wind forces.
 e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof. f) Design pressures are for strength design, multiply by 0.6 for ASD.

5. Wind Load Calculations

a) Bottom half of wall neglected in tributary area calculations.

b) Strength design values multiplied by 0.6 to obtain ASD values.

1.) Lateral Loads - Transverse Direction:

Lateral Loads on Roof Diaphragm with Positive Internal Pressure

Surface I	ad Casa	GCnf	Design Pre	essure (ps
Surface LC	au Case	oopi	(w/+GCpi)	(w/ -GC]
1T	Α	-	2.24	4.64
2T	Α	-	-5.80	-3.40
3T	Α	-	-4.32	-1.92
4T	Α	_	-3.97	-1.57
5T	В	_	1.47	3.86
6T	В	-	-3.13	-0.73
+) and (-) sig	gns signify wir	nd pressures ac	ting toward & aw	ay from su

		L •	= 98 ft.		-	
R ₁ = 672	2 lbs				R ₂ = 6386 l	lbs
) (-) signs signify wind lateral forces acting oppo) Strength design values multiplied by 0.6 to obt	osite to the direction o tain ASD values.	f the arrows shown	Shear (ASD)			
	Load	Case A: T	ransverse Directi	on		
Load Case	Walls (lbs)	Roof (lbs)	Roof Overhangs (lbs) T	otal Lateral Load (lbs) F	R1 (lbs)	R2 (lbs)
Load Case Positive Internal Pressure	Walls (lbs) 15048	Roof (lbs) -1940	Roof Overhangs (lbs) T 0	otal Lateral Load (lbs) F 13107	R1 (lbs) 6722	R2 (lbs) 6386
Load Case Positive Internal Pressure Negative Internal Pressure	Walls (lbs) 15048 15048	Roof (lbs) -1940 -1940	Roof Overhangs (lbs) T 0 0	otal Lateral Load (lbs) F 13107 13107	R1 (lbs) 6722 6722	R2 (lbs) 6386 6386

Load Walls (lb Load Case Positive Internal Pressure 3698 Negative Internal Pressure 3698 Roof Pressure = 03698 Min. Pressures (8 psf, 16 psf) 3072 a) Bottom half of wall neglected in tributary area calculations. b) Strength design values multiplied by 0.6 to obtain ASD values.

3.) Roof Truss Reactions:

 Min. Pressures (8 psf, 16 psf)
 9408
 2509
 0
 11917
 5958
 5958

Roof Truss/Rafter Reactions: Transverse End Zone 2E 3E UPLIFT LOAD u₁ = 1020 lbs u₂ = 615 lbs

a) Strength design values multiplied by 0.6 to obtain ASD values. b) Windward loads may be positive or negative depending on pitch of roof.

	Roof Truss	/Rafter Reac	tions (ASD)	
	w/ Pos	itive Internal I	Pressure		
Load Case	Horizontal Load (lbs)	Gross Uplift (lbs) N	let Uplift (lbs) Ul	(lbs)	U2 (lbs)
Transverse Int. Zone	151	3108	438	332	106
Transverse End Zone	271	4304	1635	1020	615
Longitudinal Int. Zone	218	2906	237	282	-45
Longitudinal End Zone	368	4011	1342	947	395
 a) Gross Uplift calculations do b) Net Uplift calculations inclu c) Strength design values multi d) Loads based on truss spacing e) Negative values for horizont f) Negative values for uplift inc 	not include any counteractin de counteracting roof dead le plied by 0.6 to obtain ASD v g calculated at 96" o/c. al load indicate load acting i licate net downward force (z	g roof dead loads. oads multiplied by 0.6 per alues for wind loads. n windward direction (tra ero uplift).	r load case (7) ASCE ² nverse load cases).	7-10.	

All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE 7-10. The wind load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Wind Load Report - KRATT LUMBER UNHEATED STORAGE

1. Site & Building Data

Roof Type:	Gable
Wind Speed (ult):	115 mph
Exposure Category:	С
Enclosure Class:	Enclosed
Building Width (W):	40 ft.
Building Length (L):	52 ft.
Eave Height (he):	20 ft.
Foundation Height (hf):	0 ft.
Roof Pitch:	4 /12
Eave Overhang (OHe):	0 ft.
Gable Overhang (OHg):	0 ft.

3. Design Assumptions and Notes

Geometry: Regular-Shaped Bldg.

ASCE 7-10

Low-Rise Building

Code Standard:

Height Class:

Notes:

Topographic Factor (Kzt): Directionality Factor (Kd): 18.43 deg. Roof Angle (θ): Mean Roof Height (h): 23.33 ft. Ridge Height (hr): 26.67 ft. Pos. Internal Pressure (+GCpi): +0.18 Neg. Internal Pressure (-GCpi): -0.18 Velocity Pressure Exp. Coeff. (Kh): 0.93 @ z=h Velocity Pressure (qh): 26.81 psf End Zone Width (a): 3.00 ft. Zone 2/2E Dist.: 20.00 ft.

2. Parameters & Coefficients

4. Design Loads

Top Chord Dead Load: 7 psf Bottom Chord Dead Load: 10 psf Truss/Rafter Spacing: 96 in. o/c

4. Design Wind Pressures: MWFRS Envelope Procedure

5. Wind Load Calculations

1.) Lateral Loads - Transverse Direction:

a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown. b) Strength design values multiplied by 0.6 to obtain ASD values.

Wind Base Shear (ASD)								
	Load	Case A: T	ransverse Directi	on				
Load Case	Walls (lbs)	Roof (lbs)	Roof Overhangs (lbs)	Fotal Lateral Load (lbs)	R1 (lbs)	R2 (lbs		
Positive Internal Pressure	8245	-1348	0	6897	3598	3299		
Negative Internal Pressure	8245	-1348	0	6897	3598	3299		
Roof Pressure = 0	8245	0	0	8245	4321	3923		
Min. Pressures (8 psf, 16 psf)	4992	1664	0	6656	3328	3328		
a) Bottom half of wall neglected in tributary area calculations. b) Strength design values multiplied by 0.6 to obtain ASD values.								

3.) Roof Truss Reactions:

a) Strength design values multiplied by 0.6 to obtain ASD values. b) Windward loads may be positive or negative depending on pitch of roof.

		Roof Truss	/Rafter React	tions (ASD)	
		w/ Positive Internal Pressure				
	Load Case	Horizontal Load (lbs)) Gross Uplift (lbs) N	let Uplift (lbs) U1	(lbs)	U2 (lbs)
	Transverse Int. Zone	190	3908	572	428	143
	Transverse End Zone	340	5413	2077	1294	783
	Longitudinal Int. Zone	275	3655	318	365	-47
	Longitudinal End Zone	463	5045	1708	1201	506
	 b) Net Upfirt calculations inclu c) Strength design values multij d) Loads based on truss spacing e) Negative values for horizont f) Negative values for uplift indi 	de counteracting roof dead l plied by 0.6 to obtain ASD g calculated at 96" o/c. al load indicate load acting i icate net downward force (2	oads multiplied by 0.6 per values for wind loads. in windward direction (tran zero uplift).	· load case (7) ASCE 7 nverse load cases).	7-10.	
isclaimer: The calcul of the potential load ofessional should be line tool are for educ	ations produced herein are for i cases required to fully design a consulted as per IRC 2012 Sec ational and illustrative purposes	nitial design and estimation n actual structure may no . R802.10.2 and designed conty. Medgek Design as	ng purposes only. The c ot be provided by this ca d according to the minin sumes no liability or los	alculations and drav alculator. For the des num requirements of	vings presented d sign of an actual s f ASCE 7-10. The	lo not constitute structure, a regi wind load calc

Transverse Direction

rfaces

Longitudinal Direction

Wi	Wind Base Shear (ASD)								
Ca	Case B: Longitudinal Direction								
os)	Gable Ends (lbs)	Roof (lbs) To	otal Lateral Load (lbs) RA	(lbs)	RB (lbs)				
	950	0	4648	2404	2244				
	950	0	4648	2404	2244				
	950	0	4648	2404	2244				
	819	0	3891	1946	1946				

Max. Horz. ① = 368 lbs Max. Uplift ① = 1020 lbs

e a fully engineered design

1.0

.85

Load Case B: Longitudinal Direction				
Surface	GCpf	Design Pressure (psf) (w/ +GCpi) (w/ -GCpi)		
11	-0.45	-16.89	-7.24	
2	-0.69	-23.32	-13.67	
3	-0.37	-14.75	-5.09	
4	-0.45	-16.89	-7.24	
5	0.40	5.90	15.55	
6	-0.29	-12.60	-2.95	
1E	-0.48	-17.69	-8.04	
2E	-1.07	-33.51	-23.86	
3E	-0.53	-19.04	-9.38	
4E	-0.48	-17.69	-8.04	
5E	0.61	11.53	21.18	
6E	-0.43	-16.35	-6.70	

a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) External Pressure Coefficients linearly interpolated from Fig. 28.4-1 ASCE 7-10.
c) Design building for all wind directions, 4 load patterns per load case.
d) Total horizontal shear shall not be less than that by neglecting roof wind forces. e) Min. wind load for enclosed or partially enclosed bldg.: 16 psf wall, 8 psf roof.
f) Design pressures are for strength design, multiply by 0.6 for ASD.

Torsional Load Cases				
Surface L	oad Case	GCpf	Design Pressure (psf) (w/ +GCpi) (w/ -GCpi)	
1T	Α	-	2.25	4.67
2T	A	-	-5.83	-3.42
3T	Α	-	-4.35	-1.93
4T	A	-	-3.99	-1.58
5T	В	-	1.47	3.89
6T	В	-	-3.15	-0.74
.) (1)	· · · c	1		£

a) (+) and (-) signs signify wind pressures acting toward & away from surfaces.
b) Pressures designated with a "T" are 25% of full design wind pressures.
c) Torsional loading shall apply to all 8 load patterns using the figures shown. d) Design pressures are for strength design, multiply by 0.6 for ASD.
e) Torsional Design Exceptions: One story bldg. with h ≤ 30 ft, Two stories or less framed with light frame construction, Two stories or less with flexible diaphragms.

2.) Lateral Loads - Longitudinal Direction:

Lateral Loads on Roof Diaphragm with Positive Internal Pressure

a) (-) signs signify wind lateral forces acting opposite to the direction of the arrows shown. b) Strength design values multiplied by 0.6 to obtain ASD values. c) Where the length of building (L) exceeds 4X the mean roof height (h), wind drag forces should additionally be considered.

	W	ind Base She	ear (ASD)			
	Load Ca	ase B: Longitu	idinal Dire	ction		
Load Case	Walls (lbs)	Gable Ends (lbs)	Roof (lbs) To	otal Lateral Load (lbs) RA	(lbs)	RB (lbs)
Positive Internal Pressure	4609	1488	0	6097	3130	2967
Negative Internal Pressure	4609	1488	0	6097	3130	2967
Roof Pressure $= 0$	4609	1488	0	6097	3130	2967
Min. Pressures (8 psf, 16 psf)	3840	1280	0	5120	2560	2560

a) Bottom half of wall neglected in tributary area calculations.b) Strength design values multiplied by 0.6 to obtain ASD values.

fully engineered design. red and licensed ons provided by this ess for use.

DRAWN JAW CHECKED	DATE JANUARY 24, 2022	SCALE AS NOTED	Steel Steel	
JIM WEBB, PE	Engineering & Construction, LLC	4004 Nina Otanot	1224 Ming Street La Crosse, WI 54601 (608) 780-4672	
NEW BUILDING FOR: KRATT LUMBER	1714 S. 16TH STREET	LA CROSSE, WISCONSIN	UNHEATED STORAGE: WIND LOAD REPORTS	